zoukankan      html  css  js  c++  java
  • LeetCode:Unique Paths I II

    Unique Paths

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

    The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

    How many possible unique paths are there?

    Above is a 3 x 7 grid. How many possible unique paths are there?

    Note: m and n will be at most 100.

    算法1:最容易想到的是递归解法,uniquePaths(m, n) = uniquePaths(m, n-1) + uniquePaths(m-1, n), 递归结束条件是m或n等于1,这个方法oj超时了

    1 class Solution {
    2 public:
    3     int uniquePaths(int m, int n) {
    4         if(m == 1 || n == 1)return 1;
    5         else return  uniquePaths(m, n - 1) + uniquePaths(m - 1, n);
    6     }
    7 };

    算法2:动态规划,算法1的递归解法中,其实我们计算了很多重复的子问题,比如计算uniquePaths(4, 5) 和 uniquePaths(5, 3)时都要计算子问题uniquePaths(3, 2),再者由于uniquePaths(m, n) = uniquePaths(n, m),这也使得许多子问题被重复计算了。要保存子问题的状态,这样很自然的就想到了动态规划方法,设dp[i][j] = uniquePaths(i, j), 那么动态规划方程为:

    • dp[i][j] = dp[i-1][j] + dp[i][j-1]
    • 边界条件:dp[i][1] = 1, dp[1][j] = 1
     1 class Solution {
     2 public:
     3     int uniquePaths(int m, int n) {
     4         vector<vector<int> > dp(m+1, vector<int>(n+1, 1));
     5         for(int i = 2; i <= m; i++)
     6             for(int j = 2; j <= n; j++)
     7                 dp[i][j] = dp[i-1][j] + dp[i][j-1];
     8         return dp[m][n];
     9     }
    10 };

    上述过程其实是从左上角开始,逐行计算到达每个格子的路线数目,由递推公式可以看出,到达当前格子的路线数目和两个格子有关:1、上一行同列格子的路线数目;2、同一行上一列格子的路线数目。据此我们可以优化上面动态规划方法的空间:

     1 class Solution {
     2 public:
     3     int uniquePaths(int m, int n) {
     4         vector<int>dp(n+1, 1);
     5         for(int i = 2; i <= m; i++)
     6             for(int j = 2; j <= n; j++)
     7                 dp[j] =  dp[j] + dp[j-1];
     8         return dp[n];
     9     }
    10 };

    算法3:其实这个和组合数有关,对于m*n的网格,从左上角走到右下角,总共需要走m+n-2步,其中必定有m-1步是朝右走,n-1步是朝下走,那么这个问题的答案就是组合数:, 这里需要注意的是求组合数时防止乘法溢出         本文地址

     1 class Solution {
     2 public:
     3     int uniquePaths(int m, int n) {
     4         return combination(m+n-2, m-1);
     5     }
     6     
     7     int combination(int a, int b)
     8     {
     9         if(b > (a >> 1))b = a - b;
    10         long long res = 1;
    11         for(int i = 1; i <= b; i++)
    12             res = res * (a - i + 1) / i;
    13         return res;
    14     }
    15 };

    Unique Paths II

    Follow up for "Unique Paths":

    Now consider if some obstacles are added to the grids. How many unique paths would there be?

    An obstacle and empty space is marked as 1 and 0 respectively in the grid.

    For example,

    There is one obstacle in the middle of a 3x3 grid as illustrated below.

    [
      [0,0,0],
      [0,1,0],
      [0,0,0]
    ]
    

    The total number of unique paths is 2.

    Note: m and n will be at most 100.

    这一题可以完全采用和上一题一样的解法,只是需要注意dp的初始化值,和循环的起始值

     1 class Solution {
     2 public:
     3     int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
     4         int m = obstacleGrid.size(), n = obstacleGrid[0].size();
     5         vector<int>dp(n+1, 0);
     6         dp[1] = (obstacleGrid[0][0] == 0) ? 1 : 0;
     7         for(int i = 1; i <= m; i++)
     8             for(int j = 1; j <= n; j++)
     9                 if(obstacleGrid[i-1][j-1] == 0)
    10                     dp[j] = dp[j] + dp[j-1];
    11                 else dp[j] = 0;
    12         return dp[n];
    13     }
    14 };

    【版权声明】转载请注明出处:http://www.cnblogs.com/TenosDoIt/p/3704091.html

  • 相关阅读:
    机器学习-初学者入门
    安装.cer证书并将证书从.cer格式转化为.pem格式
    字符串反转C#的实现
    Linux系统下远程文件拷贝scp命令
    【Django】ESRTful APi
    数据结构-栈跟队列基础部分
    数据结构-排序
    数据分析--Matplotlib的基本使用
    数据分析--pandas的基本使用
    数据分析--numpy的基本使用
  • 原文地址:https://www.cnblogs.com/TenosDoIt/p/3704091.html
Copyright © 2011-2022 走看看