You are given a string, S, and a list of words, L, that are all of the same length. Find all starting indices of substring(s) in S that is a concatenation of each word in L exactly once and without any intervening characters.
For example, given:
S: "barfoothefoobarman"
L: ["foo", "bar"]
You should return the indices: [0,9]
.
(order does not matter).
算法1
暴力解法,从字符串s的每个位置都判断一次(如果从当前位置开始的子串长度小于L中所有单词长度,不用判断),从当前位置开始的子串的前段部分能不能由集合L里面的单词拼接而成。
从某一个位置 i 判断时,依次判断单词s[i,i+2], s[i+3,i+5], s[i+6, i+8]…是否在集合中,如果单词在集合中,就从集合中删除该单词。
我们用一个hash map来保存单词,这样可以在O(1)时间内判断单词是否在集合中
算法的时间复杂度是O(n*(l*k))n是字符串的长度,l是单词的个数,k是单词的长度
递归代码如下:
class Solution { private: int wordLen; public: vector<int> findSubstring(string S, vector<string> &L) { unordered_map<string, int>wordTimes; for(int i = 0; i < L.size(); i++) if(wordTimes.count(L[i]) == 0) wordTimes.insert(make_pair(L[i], 1)); else wordTimes[L[i]]++; wordLen = L[0].size(); vector<int> res; for(int i = 0; i <= (int)(S.size()-L.size()*wordLen); i++) if(helper(S, i, wordTimes, L.size())) res.push_back(i); return res; } //判断子串s[index...]的前段是否能由L中的单词组合而成 bool helper(string &s, const int index, unordered_map<string, int>&wordTimes, const int wordNum) { if(wordNum == 0)return true; string firstWord = s.substr(index, wordLen); unordered_map<string, int>::iterator ite = wordTimes.find(firstWord); if(ite != wordTimes.end() && ite->second > 0) { (ite->second)--; bool res = helper(s, index+wordLen, wordTimes, wordNum-1); (ite->second)++;//恢复hash map的状态 return res; } else return false; } };
非递归代码如下:
class Solution { private: int wordLen; public: vector<int> findSubstring(string S, vector<string> &L) { unordered_map<string, int>wordTimes; for(int i = 0; i < L.size(); i++) if(wordTimes.count(L[i]) == 0) wordTimes.insert(make_pair(L[i], 1)); else wordTimes[L[i]]++; wordLen = L[0].size(); vector<int> res; for(int i = 0; i <= (int)(S.size()-L.size()*wordLen); i++) if(helper(S, i, wordTimes, L.size())) res.push_back(i); return res; } //判断子串s[index...]的前段是否能由L中的单词组合而成 bool helper(const string &s, int index, unordered_map<string, int>wordTimes, int wordNum) { for(int i = index; wordNum != 0 && i <= (int)s.size()-wordLen; i+=wordLen) { string word = s.substr(i, wordLen); unordered_map<string, int>::iterator ite = wordTimes.find(word); if(ite != wordTimes.end() && ite->second > 0) {ite->second--; wordNum--;} else return false; } if(wordNum == 0)return true; else return false; } };
OJ递归的时间小于非递归时间,因为非递归的helper函数中,hash map参数是传值的方式,每次调用都要拷贝一次hash map,递归代码中一直只存在一个hash map对象
算法2
回想前面的题目:LeetCode:Longest Substring Without Repeating Characters 和 LeetCode:Minimum Window Substring ,都用了一种滑动窗口的方法。这一题也可以利用相同的思想。
比如s = “a1b2c3a1d4”L={“a1”,“b2”,“c3”,“d4”}
窗口最开始为空,
a1在L中,加入窗口 【a1】b2c3a1d4 本文地址
b2在L中,加入窗口 【a1b2】c3a1d4
c3在L中,加入窗口 【a1b2c3】a1d4
a1在L中了,但是前面a1已经算了一次,此时只需要把窗口向右移动一个单词a1【b2c3a1】d4
d4在L中,加入窗口a1【b2c3a1d4】找到了一个匹配
如果把s改为“a1b2c3kka1d4”,那么在第四步中会碰到单词kk,kk不在L中,此时窗口起始位置移动到kk后面a1b2c3kk【a1d4
class Solution { public: vector<int> findSubstring(string S, vector<string> &L) { unordered_map<string, int>wordTimes;//L中单词出现的次数 for(int i = 0; i < L.size(); i++) if(wordTimes.count(L[i]) == 0) wordTimes.insert(make_pair(L[i], 1)); else wordTimes[L[i]]++; int wordLen = L[0].size(); vector<int> res; for(int i = 0; i < wordLen; i++) {//为了不遗漏从s的每一个位置开始的子串,第一层循环为单词的长度 unordered_map<string, int>wordTimes2;//当前窗口中单词出现的次数 int winStart = i, cnt = 0;//winStart为窗口起始位置,cnt为当前窗口中的单词数目 for(int winEnd = i; winEnd <= (int)S.size()-wordLen; winEnd+=wordLen) {//窗口为[winStart,winEnd) string word = S.substr(winEnd, wordLen); if(wordTimes.find(word) != wordTimes.end()) { if(wordTimes2.find(word) == wordTimes2.end()) wordTimes2[word] = 1; else wordTimes2[word]++; if(wordTimes2[word] <= wordTimes[word]) cnt++; else {//当前的单词在L中,但是它已经在窗口中出现了相应的次数,不应该加入窗口 //此时,应该把窗口起始位置想左移动到,该单词第一次出现的位置的下一个单词位置 for(int k = winStart; ; k += wordLen) { string tmpstr = S.substr(k, wordLen); wordTimes2[tmpstr]--; if(tmpstr == word) { winStart = k + wordLen; break; } cnt--; } } if(cnt == L.size()) res.push_back(winStart); } else {//发现不在L中的单词 winStart = winEnd + wordLen; wordTimes2.clear(); cnt = 0; } } } return res; } };
算法时间复杂度为O(n*k))n是字符串的长度,k是单词的长度
【版权声明】转载请注明出处:http://www.cnblogs.com/TenosDoIt/p/3807055.html