Introduction
Why semi-supervised learning helps?
outline
Semi-supervised Learning for Generative Model
步骤:
原因:
Low-density Separation
核心思想:非黑即白。典型的算法如下:
Self-training
Entropy-based Regularization
Smoothness Assumption
核心思想:近朱者赤,近墨者黑。典型的算法如下:
例子:Classify astronomy vs. travel articles
更多的数据连在一起,很难分类,那么如何做呢?
Cluster and then Labe
这种方法不一定made sense ,需要class很强(需要先做处理,后边会写到)。 还有另一种方法:
Graph-based Approach
Graph Construction:
怎样在Graph 中定量地表示平滑度
将该式子整理一下,换个形式
让smoothness 影响Loss
注:smoothness不一定要放在output上,放到任何一层都可以。
Better Representation
核心思想:去蕪存菁,化繁為簡 (Looking for Better Representation)
参考:
https://blog.csdn.net/soulmeetliang/article/details/73251790
http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2016/Lecture/semi%20(v3).pdf