zoukankan      html  css  js  c++  java
  • hihocoder 1643 Puzzle Game(北京icpc2017 现场赛)

    #1634 : Puzzle Game

    时间限制:1000ms
    单点时限:1000ms
    内存限制:256MB

    描述

    Once upon a time, there was a little dog YK. One day, he went to an antique shop and was impressed by a beautiful picture. YK loved it very much. However, YK did not have money to buy it. He begged the shopkeeper Bob whether he could have it without spending money.

    Fortunately, Bob enjoyed puzzle game. He promised to give YK a picture for free if YK can solve a puzzle game for him.

    Bob drew a puzzle board, which was a n×m matrix consisting of n×m cells. And there was an integer in each cell. A sub-matrix was a matrix that was a continuous part of the puzzle board (The whole puzzle board could also be called a sub-matrix). The value of a sub-matrix meant the sum of integers in the cells of the sub-matrix. The sub-matrix which had the largest value was called “the largest sub-matrix”. Bob wanted to make the value of the largest sub-matrix as small as possible by selecting one cell on the board and changed the integer in it into P. But if making that kind of change would not do anything good, he didn’t have to change any cell.

    In such a situation, YK needed to calculate the minimum value of the largest sub-matrix Bob could get.

    输入

    There are no more than 120 test cases, but at most 3 test cases in which n >= 50 or m >=50.

    The first line of each case contains three integers, above mentioned n, m and P (1<=n,m<=150,-1000<=P<=1000).

    Then n lines follow. Each line contains m integers x1,x2…xm(-1000<=xi <=1000, i = 1…m).

    These n lines are the n×m integers in the n×m cells of the puzzle board.

    输出

    For each test case, you should output the minimum value of the largest sub-matrix Bob could get.

    样例输入
    3 3 -10
    -100 4 4
    4 -10 4
    4 4 1
    3 3 -1
    -2 -2 -2
    -2 -2 -2
    -2 -2 -2
    样例输出
    8
    -2

    题意:求子矩阵和的最大值最小,如果把一个数改为p使所求变大,可以不修改。

    思路:当你要修改一个数的时候,整个矩阵的最大值可能是左边的一块,右边的一块,下面的和上面的,和当前块的最大值-a[i][j]+p;



    我们直接暴力枚举所有的数,如果a[i][j]>p,进行操作

    上下两块:ans=max(u[i-1],d[i+1]);

    左右两块:ans=max(ans,max(l[j-1],r[j+1]));

    ans1=min(ans1,max(u[n]-a[i][j]+p,ans));

    为什么是u【n】呢,因为如果修改的不是在最大块里,

    那么 max(u[n]-a[i][j]+p,ans)=u【n】,只有修改最大块才会变小。

    #include<iostream>
    #include<cmath>
    #include<cstring> 
    #include<cstdlib>
    #include<cstdio>
    #include<algorithm>
    using namespace std;
    int n,m,p,sum[500],dp[500],a[500][500],u[500],d[500],r[500],l[500];
    void solve1()
    {   memset(dp,0,sizeof(dp));
    	for(int i=1;i<=n;i++)
    	  	   {
    	  	   memset(sum,0,sizeof(sum));	
    	  	   for(int j=i;j<=n;j++)
    	  	      {
    	  	      int t=-1000000000,tmp=t;
    	  	      for(int k=1;k<=m;k++)
    				  {
    				  	sum[k]+=a[j][k];
    				  	dp[k]=max(dp[k-1],0)+sum[k];
    				  	tmp=max(dp[k],tmp);
    				   } 
    			  for(int k=j;k<=n;k++) u[k]=max(u[k],tmp);	
    			  for(int k=1;k<=i;k++) d[k]=max(d[k],tmp);   
    		      }
    	       }
    	//for(int i=1;i<=n;i++) printf("%d %d
    ",u[i],d[i]);
    }
    void solve2()
    {
    	memset(dp,0,sizeof(dp));
    	for(int i=1;i<=m;i++)
    	  	   {
    	  	   memset(sum,0,sizeof(sum));	
    	  	   for(int j=i;j<=m;j++)
    	  	      {
    	  	      int t=-1000000000,tmp=t;
    	  	      for(int k=1;k<=n;k++)
    				  {
    				  	sum[k]+=a[k][j];
    				  	dp[k]=max(dp[k-1],0)+sum[k];
    				  	tmp=max(dp[k],tmp);
    				   } 
    			  for(int k=j;k<=m;k++) l[k]=max(l[k],tmp);	
    			  for(int k=1;k<=i;k++) r[k]=max(r[k],tmp);   
    		      }
    	       }
    }
    int main()
    {   
    	while(~scanf("%d%d%d",&n,&m,&p))
    	  {
    	  	for(int i=0;i<=400;i++) l[i]=r[i]=u[i]=d[i]=-100000000;
    	  	for(int i=1;i<=n;i++)
    	  	   for(int j=1;j<=m;j++) scanf("%d",&a[i][j]);
    	    solve1();solve2();
    	    int ans1=u[n]; //printf("%d
    ",u[n]);
    	    for(int i=1;i<=n;i++)
    	       for(int j=1;j<=m;j++)
    	          {
    	          	if(a[i][j]<=p) continue;
    	          	int ans=-1000000000;
    	          	ans=max(u[i-1],d[i+1]);
    	          	ans=max(ans,max(l[j-1],r[j+1]));
    	          	ans1=min(ans1,max(u[n]-a[i][j]+p,ans));
    			  }
    		printf("%d
    ",ans1);
    	  }
    }

  • 相关阅读:
    Spring AOP概念理解 (通俗易懂)【转】
    【转】Spring AOP四种实现方式Demo详解与相关知识探究
    call的理解
    队列的执行顺序
    数组去重的方法
    要动态改变层中的内容的方法
    HTML5有哪些新特性,移除了哪些元素?如何处理HTML5新标签的浏览器兼容性问题?如何区分HTML和HTML5
    行内元素有哪些?块级元素有哪些? 空(void)元素有那些?
    HTML5头部为什么只需要写<!DOCTYPE HTML>
    link和@import引入外部样式的区别
  • 原文地址:https://www.cnblogs.com/The-Pines-of-Star/p/9878833.html
Copyright © 2011-2022 走看看