zoukankan      html  css  js  c++  java
  • Kattis

    Input

    Standard input begins with an integer T1T≤1, the number of test cases.

    Each test case consists of two polynomials. A polynomial is given by an integer 1n1310711≤n≤131071 indicating the degree of the polynomial, followed by a sequence of integers a0,a1,,ana0,a1,…,an, where aiai is the coefficient of xixi in the polynomial. All coefficients will fit in a signed 32-bit integer.

    NB! The input and output files for this problem are quite large, which means that you have to be a bit careful about I/O efficiency.

    Output

    For each test case, output the product of the two polynomials, in the same format as in the input (including the degree). All coefficients in the result will fit in a signed 32-bit integer.

    Sample Input 1Sample Output 1
    1
    2
    1 0 5
    1
    0 -2
    
    3
    0 -2 0 -10
    思路:如果是普通的多项式乘法,时间复杂度是O(n*n),所以这里要用到快速傅里叶变换(FFT应用于多项式乘法、高精度乘法、优化卷积式等)。

    #include <cmath>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define maxn (1<<18)
    #define pi 3.141592653589793238462643383
    using namespace std;
    
    struct complex
    {
    	double re,im;
    	complex(double r=0.0,double i=0.0) {re=r,im=i;}
    	void print() {printf("%.lf ",re);}
    } a[maxn*2],b[maxn*2],W[2][maxn*2];
    
    int N,na,nb,rev[maxn*2];
    
    complex operator +(const complex&A,const complex&B) {return complex(A.re+B.re,A.im+B.im);}
    complex operator -(const complex&A,const complex&B) {return complex(A.re-B.re,A.im-B.im);}
    complex operator *(const complex&A,const complex&B) {return complex(A.re*B.re-A.im*B.im,A.re*B.im+A.im*B.re);}
    
    void FFT(complex*a,int f)
    {
    	complex x,y;
    	for (int i=0; i<N; i++) if (i<rev[i]) swap(a[i],a[rev[i]]);
    	for (int i=1; i<N; i<<=1)
    		for (int j=0,t=N/(i<<1); j<N; j+=i<<1)
    			for (int k=0,l=0; k<i; k++,l+=t) x=W[f][l]*a[j+k+i],y=a[j+k],a[j+k]=y+x,a[j+k+i]=y-x;
    	if (f) for (int i=0; i<N; i++) a[i].re/=N;
    }
    
    void work()
    {
    	for (int i=0; i<N; i++)
    	{
    		int x=i,y=0;
    		for (int k=1; k<N; x>>=1,k<<=1) (y<<=1)|=x&1;
    		rev[i]=y;
    	}
    	for (int i=0; i<N; i++) W[0][i]=W[1][i]=complex(cos(2*pi*i/N),sin(2*pi*i/N)),W[1][i].im=-W[0][i].im;
    }
    
    void init()
    {   memset(a,0,sizeof(a));
        memset(b,0,sizeof(b));
    	scanf("%d",&na); na++;for (int i=0; i<na; i++) scanf("%lf",&a[i].re);
    	scanf("%d",&nb); nb++;for (int i=0; i<nb; i++) scanf("%lf",&b[i].re);
    	for (N=1; N<na||N<nb; N<<=1); N<<=1;
    }
    
    void doit()
    {
    	work(),FFT(a,0),FFT(b,0);
    	for (int i=0; i<N; i++) a[i]=a[i]*b[i];
    	FFT(a,1);
    	printf("%d
    ",na+nb-2); 
    	for (int i=0; i<na+nb-1; i++) a[i].print();
    	printf("
    ");
    }
    
    int main()
    {
    int t; scanf("%d",&t);   
    while(t--)
        {
    	init();
    	doit();
        }
    }

    风在前,无惧!
  • 相关阅读:
    websocket的理解&应用&场景
    如何设置winform程序图标
    Python简单爬虫爬取自己博客园所有文章
    分享一个自己做的SpringMVC的PPT
    2016校招薪资汇总
    2016阿里巴巴校招offer面经
    利用快排partition求前N小的元素
    几个面试经典算法题Java解答
    深入理解java垃圾回收机制
    深入理解JVM结构
  • 原文地址:https://www.cnblogs.com/The-Pines-of-Star/p/9878839.html
Copyright © 2011-2022 走看看