zoukankan      html  css  js  c++  java
  • [解题报告]382 Perfection

     Perfection 

    From the article Number Theory in the 1994 Microsoft Encarta: ``If abc are integers such that a = bc, a is called a multiple of b or of c, and b or c is called a divisor or factor of a. If c is not tex2html_wrap_inline41 , b is called a proper divisor of a. Even integers, which include 0, are multiples of 2, for example, -4, 0, 2, 10; an odd integer is an integer that is not even, for example, -5, 1, 3, 9. A perfect number is a positive integer that is equal to the sum of all its positive, proper divisors; for example, 6, which equals 1 + 2 + 3, and 28, which equals 1 + 2 + 4 + 7 + 14, are perfect numbers. A positive number that is not perfect is imperfect and is deficient or abundant according to whether the sum of its positive, proper divisors is smaller or larger than the number itself. Thus, 9, with proper divisors 1, 3, is deficient; 12, with proper divisors 1, 2, 3, 4, 6, is abundant."

    Problem Statement

    Given a number, determine if it is perfect, abundant, or deficient.

    Input

    A list of N positive integers (none greater than 60,000), with 1 < N < 100. A 0 will mark the end of the list.

    Output

    The first line of output should read PERFECTION OUTPUT. The next N lines of output should list for each input integer whether it is perfect, deficient, or abundant, as shown in the example below. Format counts: the echoed integers should be right justified within the first 5 spaces of the output line, followed by two blank spaces, followed by the description of the integer. The final line of output should read END OF OUTPUT.

    Sample Input

    15 28 6 56 60000 22 496 0

    Sample Output

    PERFECTION OUTPUT
       15  DEFICIENT
       28  PERFECT
        6  PERFECT
       56  ABUNDANT
    60000  ABUNDANT
       22  DEFICIENT
      496  PERFECT
    END OF OUTPUT


    注意输入输出方式

    #include<stdio.h>
    #include<string.h>
    void panduan(long i)
    {
        long j;
        long sum=0;
        for(j=1;j<i;j++)
        {
            if(i%j==0) sum+=j;
        }
        if(i>sum) printf("%5d  DEFICIENT\n",i);
        if(i==sum) printf("%5d  PERFECT\n",i);
        if(i<sum) printf("%5d  ABUNDANT\n",i);
    
    }
    int main()
    {
        long i,j=0;
        printf("PERFECTION OUTPUT\n");
        while(scanf("%ld",&i)!=EOF&&i)
        panduan(i);
        printf("END OF OUTPUT\n");
        return 0;
    }
  • 相关阅读:
    程序设计网站综合
    .net 获取url的方法(转)
    制作简单的语音识别系统(阅读文章)
    创建 WPF 不规则窗口
    高斯消元法
    How many ways(DFS记忆化搜索)
    I NEED A OFFER!
    免费馅饼
    N^N(Leftmost Digit )
    Common Subsequence
  • 原文地址:https://www.cnblogs.com/TheLaughingMan/p/2923058.html
Copyright © 2011-2022 走看看