zoukankan      html  css  js  c++  java
  • POJ 1741 Tree 求树上路径小于k的点对个数)

                                                                                                 POJ 1741 Tree

    Description

    Give a tree with n vertices,each edge has a length(positive integer less than 1001). 
    Define dist(u,v)=The min distance between node u and v. 
    Give an integer k,for every pair (u,v) of vertices is called valid if and only if dist(u,v) not exceed k. 
    Write a program that will count how many pairs which are valid for a given tree. 

    Input

    The input contains several test cases. The first line of each test case contains two integers n, k. (n<=10000) The following n-1 lines each contains three integers u,v,l, which means there is an edge between node u and v of length l. 
    The last test case is followed by two zeros. 

    Output

    For each test case output the answer on a single line.

    Sample Input

    5 4
    1 2 3
    1 3 1
    1 4 2
    3 5 1
    0 0
    

    Sample Output

    8
    题目大意:有一颗由n个点组成的树,问树上两点间距离小于等于k的点对有多少对
    输入:多组数据输入。每组数据第1行n,k,接下来n-1行,u,v,l表示点u与点v之间有一条长为l的边
    输出:点对个数
    基本算法:点分治
    点分治,本质还是分治算法
    对于一棵树,简单的递归搜索的复杂度,呵呵~~,
    所以为了降低复杂度,通俗点儿说就是将一棵树拆开
    一棵树的复杂度之所以高,是因为它有可能很深,
    所以拆要使拆开后的几棵树最深的最小
    那么选取的这个点就是树的重心
    树的重心通俗点儿说就是删除重心后最大的连通块最小
    找出重心后,树上的点的路径就可以分为
    经过重心的 和 不过重心的
    对于经过重心的,
    1、统计出过重心的所有点的满足条件的数目=ans1
    2、对于每棵子树,统计一遍自己内部满足条件的数目=ans2
    ans=ans1-所有的ans2
    对于不经过重心的,继续递归
    本人点分治理解不深,对点分治更详细的解读 推荐博客:http://www.cnblogs.com/chty/p/5912360.html
    对于文章中出现的错误,欢迎各位指正
    代码中数组含义:head[],链表  son[i]=j,以i为根的所有子树总共有j个节点(包括i)    
         f[i]=j以i为根的所有子树中,最大的一颗子树有j个节点(不包括i)
    sum,当前计算的树或子树的点的个数
         d[i]=j,点i到当前所选的根节点距离为j deep[],d数组的汇总
    代码中函数作用:getroot,找重心 getdeep,统计点之间的距离 cal,统计满足条件的点对数目
    部分代码细节:
    getroot函数:son[x]=1,因为son包含自己 f[x]=0,因为f可能存有上一次的结果
    f[x]=max(f[x],sum-son[x]);①解释了为什么son包含自己,sum是总点数,son[x]是除临时指定的父节点所在子树的子树节点总数,相减就是临时父节点所在子树节点总数
    因为父节点是临时指定的,所以也有可能成为x的孩子节点,所以父节点所在子树也作为x的一颗子树 ②在>2个点时,保证不让叶子节点成为重心
    work函数:root=0 && main函数 f[0]=inf 这两个互相照应,删除选定的根之后,让根=0,因为f[0]=inf,这样在getroot函数里才保证了f[x]<f[root],更新root
    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    #define N 10010
    #define inf 20001
    using namespace std;
    int n,k,cnt,head[N],son[N],f[N],sum,ans,root,d[N],deep[N];
    bool vis[N];
    struct node
    {
        int next,to,w;
    }e[2*N];
    inline void add(int u,int v,int w)
    {
        e[++cnt].to=v;e[cnt].w=w;e[cnt].next=head[u];head[u]=cnt;
        e[++cnt].to=u;e[cnt].w=w;e[cnt].next=head[v];head[v]=cnt;
    }
    inline void pre()
    {
        memset(head,0,sizeof(head));
        memset(vis,false,sizeof(vis));
        ans=0;cnt=0;root=0;
    }
    inline void getroot(int x,int fa)
    {
        son[x]=1;f[x]=0;
        for(int i=head[x];i;i=e[i].next)
        {
            if(e[i].to==fa||vis[e[i].to]) continue;
            getroot(e[i].to,x);
            son[x]+=son[e[i].to];
            f[x]=max(f[x],son[e[i].to]);
        }
        f[x]=max(f[x],sum-son[x]);
        if(f[x]<f[root]) root=x;
    }
    inline void getdeep(int x,int fa)
    {
        deep[++deep[0]]=d[x];
        for(int i=head[x];i;i=e[i].next)
        {
            if(e[i].to==fa||vis[e[i].to]) continue;
            d[e[i].to]=d[x]+e[i].w;
            getdeep(e[i].to,x);
        }
    }
    inline int cal(int x,int p)
    {
        d[x]=p;deep[0]=0;
        getdeep(x,0);
        sort(deep+1,deep+deep[0]+1);
        int t=0,l,r;
        for(l=1,r=deep[0];l<r;)
        {
            if(deep[l]+deep[r]<=k) {t+=r-l;l++;}
            else r--;
        } 
        return t;
    }
    inline void work(int x)
    {
        ans+=cal(x,0);
        vis[x]=true;
        for(int i=head[x];i;i=e[i].next)
        {
            if(vis[e[i].to]) continue;
            ans-=cal(e[i].to,e[i].w);
            sum=son[e[i].to];
            root=0;
            getroot(e[i].to,0);
            work(root);
        }
    }
    int main()
    {
        while(1)
        {
            scanf("%d%d",&n,&k);
            if(!n) return 0;
            pre();
            int u,v,w;
            for(int i=1;i<n;i++)
            {
                scanf("%d%d%d",&u,&v,&w);
                add(u,v,w);        
            }
            sum=n;f[0]=inf;
            getroot(1,0); 
            work(root);
            printf("%d
    ",ans);
        }
    }
    加的是无向边,链表忘了开双倍,RE。。。。。。
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #define inf 0x7fffffff
    using namespace std;
    int n,K,cnt,sum,ans,root;
    int head[10005],deep[10005],d[10005],f[10005],son[10005];
    bool vis[10005];
    struct data{int to,next,v;}e[20005];
    inline int read()
    {
        int x=0;char c=getchar();
        while(c<'0'||c>'9') c=getchar();
        while(c>='0'&&c<='9') {x=x*10+c-'0';c=getchar();}
        return x;
    }
    inline void insert(int u,int v,int w)
    {
        e[++cnt].to=v;e[cnt].next=head[u];head[u]=cnt;e[cnt].v=w;
        e[++cnt].to=u;e[cnt].next=head[v];head[v]=cnt;e[cnt].v=w;
    }
    //最小递归层数    why联通的节点数量最小? 不是层数? 
    inline void getroot(int x,int fa)
    {
        son[x]=1;f[x]=0;//son:以x为根的子树的节点个数,包括自己 
        //f[x]=0 不能删  因为f[x]可能存有上一次的结果 
        for(int i=head[x];i;i=e[i].next)
        {
            if(e[i].to==fa||vis[e[i].to]) continue;  //vis=true表示节点已删除 
            getroot(e[i].to,x);
            son[x]+=son[e[i].to];
            f[x]=max(f[x],son[e[i].to]);
        }
        f[x]=max(f[x],sum-son[x]);
    //树本有根,点分治重新找根,所以以x为根的子树除了已递归到的,还有以父节点为根的子树,这也是son[x]=1的原因 
        if(f[x]<f[root]) root=x;//找到的根满足它的最大子树最小 
    }
    inline void getdeep(int x,int fa)
    {
        deep[++deep[0]]=d[x];//deep[0]总的节点数,deep 每个点到根节点的距离 
        for(int i=head[x];i;i=e[i].next)
        {
            if(e[i].to==fa||vis[e[i].to]) continue;
            d[e[i].to]=d[x]+e[i].v;
            getdeep(e[i].to,x);
        }
    }
    inline int cal(int x,int now)//now初始为0 
    {
        d[x]=now;deep[0]=0;//d是长度 
        getdeep(x,0);//得到以x为根的子树中,每个点到x的距离 
        sort(deep+1,deep+deep[0]+1);
        int t=0,l,r;
        for(l=1,r=deep[0];l<r;)
        {
            if(deep[l]+deep[r]<=K) {t+=r-l;l++;}
            else r--;
        }
        return t;
    }
    inline void work(int x)//x是确定的根 
    {
        ans+=cal(x,0);
        vis[x]=1;
        for(int i=head[x];i;i=e[i].next)
        {
            if(vis[e[i].to]) continue;
            ans-=cal(e[i].to,e[i].v);
            sum=son[e[i].to];
            root=0;//删除原根节点后,重新找根节点,f【0】=inf 
            getroot(e[i].to,root);
            work(root);
        }
    }
    int main()
    {
        while(1)
        {
            ans=0,root=0,cnt=0;
            memset(vis,0,sizeof(vis));
            memset(head,0,sizeof(head));
            n=read();K=read();
            if(!n) return 0;
            for(int i=1;i<n;i++)
            {
                int u=read(),v=read(),w=read();
                insert(u,v,w);
            }
            sum=n;f[0]=inf;//sum:用sum-节点已统计的子树节点个数=以节点临时父节点为根的子树节点个数 
            //f  记录以x为根的最大的子树的大小,最后从f中取最小值   
            //f[0]=inf 不能删  因为每次getroot 更新root根据f[x]是否小于f[root],每次删除一个点root=0 
            getroot(1,0);//找第一个根 ,临时从第1个点开始找 
            work(root);
            printf("%d
    ",ans);
        }
    }
    学习时打的注释



  • 相关阅读:
    tyvj1061Mobile Service
    POJ3666序列最小差值
    POJ2279杨氏矩阵+钩子定理
    POJ2127 LICS模板
    codevs2189数字三角形(%100)
    qhfl-7 结算中心
    qhfl-6 购物车
    qhfl-5 redis 简单操作
    qhfl-4 注册-登录-认证
    qhfl-3 Course模块
  • 原文地址:https://www.cnblogs.com/TheRoadToTheGold/p/6378840.html
Copyright © 2011-2022 走看看