Farey Sequence
Time Limit: 1000MS | Memory Limit: 65536K | |
Description
The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 < a < b <= n and gcd(a,b) = 1 arranged in increasing order. The first few are
F2 = {1/2}
F3 = {1/3, 1/2, 2/3}
F4 = {1/4, 1/3, 1/2, 2/3, 3/4}
F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}
You task is to calculate the number of terms in the Farey sequence Fn.
F2 = {1/2}
F3 = {1/3, 1/2, 2/3}
F4 = {1/4, 1/3, 1/2, 2/3, 3/4}
F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}
You task is to calculate the number of terms in the Farey sequence Fn.
Input
There are several test cases. Each test case has only one line, which contains a positive integer n (2 <= n <= 106). There are no blank lines between cases. A line with a single 0 terminates the input.
Output
For each test case, you should output one line, which contains N(n) ---- the number of terms in the Farey sequence Fn.
Sample Input
2 3 4 5 0
Sample Output
1 3 5 9
Source
POJ Contest,Author:Mathematica@ZSU
题意:求2——n的欧拉函数之和
线性筛出欧拉函数,搞个前缀和
注意long long
#include<cstdio> #define N 1000001 using namespace std; bool check[N]; int prime[N],cnt,phi[N],a; long long sum[N]; void euler() { phi[1]=1; for(int i=2;i<=N;i++) { if(!check[i]) { prime[++cnt]=i; phi[i]=i-1; } for(int j=1;j<=cnt;j++) { if(i*prime[j]>N) break; check[i*prime[j]]=true; if(i%prime[j]==0) { phi[i*prime[j]]=phi[i]*prime[j]; break; } phi[i*prime[j]]=phi[i]*(prime[j]-1); } } } int main() { euler(); for(int i=1;i<=N;i++) sum[i]+=sum[i-1]+1ll*phi[i]; while(1) { scanf("%d",&a); if(!a) return 0; printf("%lld ",sum[a]-1); } }