zoukankan      html  css  js  c++  java
  • UVALive-3263 That Nice Euler Circuit (几何欧拉定理)

    https://vjudge.net/problem/UVALive-3263

    平面上有一个n个端点的一笔画,第n个端点总是和第一个端点重合,因此图示一条闭合曲线。

    组成一笔画的线段可以相交,但不会部分重叠,求这些线段将平面分为几部分

    包括封闭区域和无限大区域

    欧拉定理:平面图的顶点数V,边数E,面数F ,V+F-E=2

    顶点数包含原来节点、新增节点,可能多线共点,所以还要去重

    边数包含原来的边、新增的边,

    判断新增边:枚举点、边,如果点在线段上(非端点处),边数+1

    判断点在线段上且非端点:点与线段端点两向量的叉积=0,点积<0

    (如果是端点点积=0)

    #include<cmath>
    #include<cstdio>
    #include<algorithm>
    
    using namespace std;
    
    const double eps=1e-10;
    
    struct Point
    {
        double x,y;
        Point(double x=0,double y=0) : x(x),y(y) { }
        bool operator == (const Point b) const
        {
            return fabs(x-b.x)<eps && fabs(y-b.y)<eps; 
        }
        bool operator < (const Point b) const
        {
            return (x<b.x||(fabs(x-b.x)<eps && y<b.y));
        }
        /*Point operator = (const Point b)
        {
            return b;        
        }*/
    };
    
    typedef Point Vector;
    
    
    Point p[301],section[90301];
    
    int sumedge,sumpoint;
    
    Vector operator + (Vector A,Vector B) { return Vector(A.x+B.x,A.y+B.y); }
    Vector operator - (Vector A,Vector B) { return Vector(A.x-B.x,A.y-B.y); }
    Vector operator * (Vector A,double p) { return Vector(A.x*p,A.y*p); }
    Vector operator / (Vector A,double p) { return Vector(A.x/p,A.y/p); }
    
    struct Geometry
    {
        double Cross(Vector A,Vector B)
        {
            return A.x*B.y-A.y*B.x;
        }
        double Dot(Vector A,Vector B)
        {
            return A.x*B.x+A.y*B.y;
        }
        bool OnSegment(Point p,Point a1,Point a2)
        {
            return dcmp(Cross(a1-p,a2-p))==0 && dcmp(Dot(a1-p,a2-p))<0;
        }
        bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2)
        {
            double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1),
                   c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1);
            return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0;
        }
        Point GetLineIntersection(Point P,Vector v,Point Q,Vector w)
        {
            Vector u=P-Q;
            double t=Cross(w,u)/Cross(v,w);
            return P+v*t;
        }
        int dcmp(double x)
        {
            if(fabs(x)<eps) return 0; return x<0 ? -1:1;
        }
    };
    
    Geometry Two_dimensional;
    
    
    /*bool operator == (Point a,Point b)
    {
        return Two_dimensional.dcmp(a.x-b.x)==0 && Two_dimensional.dcmp(a.y-b.y)==0; 
    }
    bool operator < (Point a,Point b)
    {
        if(Two_dimensional.dcmp(a.x-b.x)==0)
        {
            if(Two_dimensional.dcmp(a.y-b.y)<=0) return 1;
            return 0;
        }
        if(Two_dimensional.dcmp(a.x-b.x)==-1) return 1;
        return 0;
    }*/
    
    /*bool operator < (const Point& a, const Point& b) {
        return a.x < b.x || (a.x == b.x && a.y < b.y);
    }
    
    bool operator == (const Point& a, const Point& b) 
    {
        return Two_dimensional.dcmp(a.x - b.x) == 0 && Two_dimensional.dcmp(a.y - b.y) == 0;
    }*/ 
    int main()
    {
        int n,k,tt=0;
        while(scanf("%d",&n)!=EOF)
        {
            if(!n) return 0;
            for(int i=0;i<n;i++) scanf("%lf%lf",&p[i].x,&p[i].y),section[i]=p[i];
            n--;
            sumpoint=n; sumedge=n;
            for(int i=0;i<n;i++)
                for(int j=i+1;j<n;j++)
                 {
                    if(Two_dimensional.SegmentProperIntersection(p[i],p[i+1],p[j],p[j+1]))  
                        section[sumpoint++]=Two_dimensional.GetLineIntersection(p[i],p[i+1]-p[i],p[j],p[j+1]-p[j]);
                 }
            sort(section,section+sumpoint);
            sumpoint=unique(section,section+sumpoint)-section;
            //for(int i=0;i<sumpoint;i++) printf("%.5lf %.5lf
    ",section[i].x,section[i].y);
            for(int i=0;i<sumpoint;i++)
             for(int j=0;j<n;j++)
              if(Two_dimensional.OnSegment(section[i],p[j],p[j+1])) sumedge++;
            printf("Case %d: There are %d pieces.
    ",++tt,sumedge+2-sumpoint);
        }
        
    }
  • 相关阅读:
    P1880 [NOI1995]石子合并
    LC 1388. Pizza With 3n Slices
    1129 Recommendation System
    1131 Subway Map
    C#中的lamda实用的select用法
    C# Image与Base64编码互转函数
    签名算法的URL
    xml格式封装数据
    layer 相关网址
    js-清空array数组
  • 原文地址:https://www.cnblogs.com/TheRoadToTheGold/p/6977751.html
Copyright © 2011-2022 走看看