zoukankan      html  css  js  c++  java
  • poj 1419 Graph Coloring

    http://poj.org/problem?id=1419

    题意:

    一张图黑白染色,相邻点不能都染黑色,最多能染几个黑色点

    最大点独立集

    但是图不能同构为二分图,不能用二分图匹配来做

    那就爆搜吧

    还可以转化为补图的最大团问题

    #include<cstdio>
    #include<cstring>
    #include<iostream>
    
    using namespace std;
    
    bool map[101][101];
    int color[101],res[101];
    
    int n,ans,cnt;
    
    void read(int &x)
    {
        x=0; char c=getchar();
        while(!isdigit(c)) c=getchar();
        while(isdigit(c)) { x=x*10+c-'0'; c=getchar(); }
    }
    
    bool can(int s)
    {
        for(int i=1;i<=n;++i)
        {
            if(map[s][i] && color[i]==1) return false;
        }
        return true;
    }
    
    void dfs(int p)
    {
        if(p>n)
        {
            ans=cnt;
            int k=0;
            for(int i=1;i<=n;++i)
            {
                if(color[i]==1) res[++k]=i;
            }
            return;
        }
        if(cnt+n-p+1<=ans) return;
        if(can(p))
        {
            cnt++;
            color[p]=1;
            dfs(p+1);
            cnt--;
        }
        color[p]=2;
        dfs(p+1);
    }
    
    int main()
    {
        int T;
        read(T);
        int m,x,y;
        while(T--)
        {
            read(n); read(m);
            memset(map,false,sizeof(map));
            memset(color,0,sizeof(color));
            while(m--)
            {
                read(x); read(y);
                map[x][y]=map[y][x]=true;
            }
            ans=cnt=0;
            dfs(1);
            cout<<ans<<'
    ';
            for(int i=1;i<ans;++i) cout<<res[i]<<' ';
            cout<<res[ans]<<'
    ';
        }
    }
    Graph Coloring
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 5384   Accepted: 2515   Special Judge

    Description

    You are to write a program that tries to find an optimal coloring for a given graph. Colors are applied to the nodes of the graph and the only available colors are black and white. The coloring of the graph is called optimal if a maximum of nodes is black. The coloring is restricted by the rule that no two connected nodes may be black. 


     
    Figure 1: An optimal graph with three black nodes 

    Input

    The graph is given as a set of nodes denoted by numbers 1...n, n <= 100, and a set of undirected edges denoted by pairs of node numbers (n1, n2), n1 != n2. The input file contains m graphs. The number m is given on the first line. The first line of each graph contains n and k, the number of nodes and the number of edges, respectively. The following k lines contain the edges given by a pair of node numbers, which are separated by a space.

    Output

    The output should consists of 2m lines, two lines for each graph found in the input file. The first line of should contain the maximum number of nodes that can be colored black in the graph. The second line should contain one possible optimal coloring. It is given by the list of black nodes, separated by a blank.

    Sample Input

    1
    6 8
    1 2
    1 3
    2 4
    2 5
    3 4
    3 6
    4 6
    5 6

    Sample Output

    3
    1 4 5
  • 相关阅读:
    基于 HTML5 WebGL 构建智能数字化城市 3D 全景
    基于 H5 + WebGL 实现 3D 可视化地铁系统
    基于 HTML5 WebGL 的 3D 科幻风机
    基于 HTML5 + WebGL 的太阳系 3D 展示系统
    HT Vue 集成
    基于 HTML5 + WebGL 的地铁 3D 可视化系统
    基于 HTML5 WebGL 和 VR 技术的 3D 机房数据中心可视化
    String、StringBuffer和StringBuilder的区别
    Python--Numpy基础
    python中的next()以及iter()函数
  • 原文地址:https://www.cnblogs.com/TheRoadToTheGold/p/8007192.html
Copyright © 2011-2022 走看看