zoukankan      html  css  js  c++  java
  • poj 1419 Graph Coloring

    http://poj.org/problem?id=1419

    题意:

    一张图黑白染色,相邻点不能都染黑色,最多能染几个黑色点

    最大点独立集

    但是图不能同构为二分图,不能用二分图匹配来做

    那就爆搜吧

    还可以转化为补图的最大团问题

    #include<cstdio>
    #include<cstring>
    #include<iostream>
    
    using namespace std;
    
    bool map[101][101];
    int color[101],res[101];
    
    int n,ans,cnt;
    
    void read(int &x)
    {
        x=0; char c=getchar();
        while(!isdigit(c)) c=getchar();
        while(isdigit(c)) { x=x*10+c-'0'; c=getchar(); }
    }
    
    bool can(int s)
    {
        for(int i=1;i<=n;++i)
        {
            if(map[s][i] && color[i]==1) return false;
        }
        return true;
    }
    
    void dfs(int p)
    {
        if(p>n)
        {
            ans=cnt;
            int k=0;
            for(int i=1;i<=n;++i)
            {
                if(color[i]==1) res[++k]=i;
            }
            return;
        }
        if(cnt+n-p+1<=ans) return;
        if(can(p))
        {
            cnt++;
            color[p]=1;
            dfs(p+1);
            cnt--;
        }
        color[p]=2;
        dfs(p+1);
    }
    
    int main()
    {
        int T;
        read(T);
        int m,x,y;
        while(T--)
        {
            read(n); read(m);
            memset(map,false,sizeof(map));
            memset(color,0,sizeof(color));
            while(m--)
            {
                read(x); read(y);
                map[x][y]=map[y][x]=true;
            }
            ans=cnt=0;
            dfs(1);
            cout<<ans<<'
    ';
            for(int i=1;i<ans;++i) cout<<res[i]<<' ';
            cout<<res[ans]<<'
    ';
        }
    }
    Graph Coloring
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 5384   Accepted: 2515   Special Judge

    Description

    You are to write a program that tries to find an optimal coloring for a given graph. Colors are applied to the nodes of the graph and the only available colors are black and white. The coloring of the graph is called optimal if a maximum of nodes is black. The coloring is restricted by the rule that no two connected nodes may be black. 


     
    Figure 1: An optimal graph with three black nodes 

    Input

    The graph is given as a set of nodes denoted by numbers 1...n, n <= 100, and a set of undirected edges denoted by pairs of node numbers (n1, n2), n1 != n2. The input file contains m graphs. The number m is given on the first line. The first line of each graph contains n and k, the number of nodes and the number of edges, respectively. The following k lines contain the edges given by a pair of node numbers, which are separated by a space.

    Output

    The output should consists of 2m lines, two lines for each graph found in the input file. The first line of should contain the maximum number of nodes that can be colored black in the graph. The second line should contain one possible optimal coloring. It is given by the list of black nodes, separated by a blank.

    Sample Input

    1
    6 8
    1 2
    1 3
    2 4
    2 5
    3 4
    3 6
    4 6
    5 6

    Sample Output

    3
    1 4 5
  • 相关阅读:
    深入理解泛型之JAVA泛型的继承和实现、泛型擦除
    hadoop过程中遇到的错误与解决方法
    微服务拆分到什么粒度合适——康威定律
    墨菲定律(设计系统)和康威定律(系统划分)
    Hadoop-Impala学习笔记之SQL参考
    Hadoop-Impala学习笔记之管理
    Hadoop2-HDFS学习笔记之入门(不含YARN及MR的调度功能)
    Hadoop-Impala学习笔记之入门
    解决 Invalid character found in method name. HTTP method names must be tokens 异常信息
    从康威定律和技术债看研发之痛
  • 原文地址:https://www.cnblogs.com/TheRoadToTheGold/p/8007192.html
Copyright © 2011-2022 走看看