zoukankan      html  css  js  c++  java
  • poj 1419 Graph Coloring

    http://poj.org/problem?id=1419

    题意:

    一张图黑白染色,相邻点不能都染黑色,最多能染几个黑色点

    最大点独立集

    但是图不能同构为二分图,不能用二分图匹配来做

    那就爆搜吧

    还可以转化为补图的最大团问题

    #include<cstdio>
    #include<cstring>
    #include<iostream>
    
    using namespace std;
    
    bool map[101][101];
    int color[101],res[101];
    
    int n,ans,cnt;
    
    void read(int &x)
    {
        x=0; char c=getchar();
        while(!isdigit(c)) c=getchar();
        while(isdigit(c)) { x=x*10+c-'0'; c=getchar(); }
    }
    
    bool can(int s)
    {
        for(int i=1;i<=n;++i)
        {
            if(map[s][i] && color[i]==1) return false;
        }
        return true;
    }
    
    void dfs(int p)
    {
        if(p>n)
        {
            ans=cnt;
            int k=0;
            for(int i=1;i<=n;++i)
            {
                if(color[i]==1) res[++k]=i;
            }
            return;
        }
        if(cnt+n-p+1<=ans) return;
        if(can(p))
        {
            cnt++;
            color[p]=1;
            dfs(p+1);
            cnt--;
        }
        color[p]=2;
        dfs(p+1);
    }
    
    int main()
    {
        int T;
        read(T);
        int m,x,y;
        while(T--)
        {
            read(n); read(m);
            memset(map,false,sizeof(map));
            memset(color,0,sizeof(color));
            while(m--)
            {
                read(x); read(y);
                map[x][y]=map[y][x]=true;
            }
            ans=cnt=0;
            dfs(1);
            cout<<ans<<'
    ';
            for(int i=1;i<ans;++i) cout<<res[i]<<' ';
            cout<<res[ans]<<'
    ';
        }
    }
    Graph Coloring
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 5384   Accepted: 2515   Special Judge

    Description

    You are to write a program that tries to find an optimal coloring for a given graph. Colors are applied to the nodes of the graph and the only available colors are black and white. The coloring of the graph is called optimal if a maximum of nodes is black. The coloring is restricted by the rule that no two connected nodes may be black. 


     
    Figure 1: An optimal graph with three black nodes 

    Input

    The graph is given as a set of nodes denoted by numbers 1...n, n <= 100, and a set of undirected edges denoted by pairs of node numbers (n1, n2), n1 != n2. The input file contains m graphs. The number m is given on the first line. The first line of each graph contains n and k, the number of nodes and the number of edges, respectively. The following k lines contain the edges given by a pair of node numbers, which are separated by a space.

    Output

    The output should consists of 2m lines, two lines for each graph found in the input file. The first line of should contain the maximum number of nodes that can be colored black in the graph. The second line should contain one possible optimal coloring. It is given by the list of black nodes, separated by a blank.

    Sample Input

    1
    6 8
    1 2
    1 3
    2 4
    2 5
    3 4
    3 6
    4 6
    5 6

    Sample Output

    3
    1 4 5
  • 相关阅读:
    js 定时器 执行一次和重复执行
    Django 会议室预定
    关于跨域介绍和djiago解决跨域问题
    原生Form 和 Form组件 Modelform
    关于Djiango中 前端多对多字段点(,)的显示问题
    Djiango权限组件
    关于 or 判断都是Ture的问题
    基于多对多字段的增删改查
    二.面向对象进阶
    python大数据初探--pandas,numpy代码示例
  • 原文地址:https://www.cnblogs.com/TheRoadToTheGold/p/8007192.html
Copyright © 2011-2022 走看看