zoukankan      html  css  js  c++  java
  • Codeforces Round #449 C. Willem, Chtholly and Seniorious (Old Driver Tree)

    http://codeforces.com/problemset/problem/896/C

    题意:

    对于一个随机序列,执行以下操作:

    区间赋值

    区间加

    区间求第k小

    区间求k次幂的和

    对于随机序列,可以使用Old Driver Tree

    就是将序列中,连续的相同值域合并为一段

    然后暴力操作

    #include<set>
    #include<vector>
    #include<cstdio>
    #include<iostream>
    #include<algorithm>
    
    using namespace std;
    
    typedef long long LL;
    
    #define N 100001
    
    int n,m,seed,vmax,ret;
    int a[N];
    
    struct node
    {
        int l,r;
        mutable LL val;
        bool operator < (node p) const
        {
            return l<p.l;
        }
        node(int l=0,int r=0,LL val=0):l(l),r(r),val(val) { }
    };
    
    set<node>s;
    
    typedef set<node> :: iterator seti;
    
    vector<pair<LL,int> >par;
    
    void read(int &x)
    {
        x=0; char c=getchar();
        while(!isdigit(c))  c=getchar(); 
        while(isdigit(c)) { x=x*10+c-'0'; c=getchar(); }    
    }
    
    int rnd()
    {
        ret=seed;
        seed=((LL)seed*7+13)%1000000007;
        return ret;
    }
    
    void split(int pos)
    {
        seti it=s.lower_bound(node(pos,-1,-1));
        if(it==s.end() || it->l>pos)
        {
            --it;
            int l=it->l,r=it->r;
            LL val=it->val;
            s.erase(it);
            s.insert(node(l,pos-1,val));
            s.insert(node(pos,r,val));
        }
    }
    
    LL quickpow(LL a,LL x,LL mod)
    {
        LL res=1;
        for(;x;x>>=1,a=a*a%mod)
            if(x&1) res=res*a%mod;
        return res;
    }
    
    int main()
    {
        read(n);
        read(m);
        read(seed);
        read(vmax);
        for(int i=1;i<=n;++i) a[i]=rnd()%vmax+1;
        int r;
        for(int i=1;i<=n;)
        {
            r=i+1;
            while(a[r]==a[i]) r++;
            s.insert(node(i,r-1,(LL)a[i]));
            i=r;
        }
        int op,l,x,y;
        for(int i=1;i<=m;++i)
        {
            op=rnd()%4+1;
            l=rnd()%n+1;
            r=rnd()%n+1;
            if(l>r) swap(l,r);
            if(op==3) x=rnd()%(r-l+1)+1;
            else x=rnd()%vmax+1;
            if(op==4) y=rnd()%vmax+1;
            split(l);
            if(r<n) split(r+1);
            seti itl=s.lower_bound(node(l,-1,-1));
            seti itr=s.upper_bound(node(r,-1,-1));
            if(op==1)
            {
                for(seti it=itl;it!=itr;++it) it->val+=x;
            } 
            else if(op==2)
             {
                 s.erase(itl,itr);
                 s.insert(node(l,r,x));
            }
            else if(op==3)
            {
                par.clear();
                for(seti it=itl;it!=itr;++it) 
                    par.push_back(make_pair(it->val,it->r-it->l+1));
                sort(par.begin(),par.end());
                for(int i=0;i<par.size();++i) 
                {
                    x-=par[i].second;
                    if(x<=0) 
                    {
                        cout<<par[i].first<<'
    ';
                        break;
                    }
                }
            }
            else 
            {
                LL ans=0;
                for(seti it=itl;it!=itr;++it)
                {
                    LL val=quickpow(it->val%y,x,y);
                    val=val*(it->r-it->l+1)%y;
                    ans=(ans+val)%y;
                }
                cout<<ans<<'
    ';
            }
        }
        return 0;
    }
    C. Willem, Chtholly and Seniorious
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    — Willem...

    — What's the matter?

    — It seems that there's something wrong with Seniorious...

    — I'll have a look...

    Seniorious is made by linking special talismans in particular order.

    After over 500 years, the carillon is now in bad condition, so Willem decides to examine it thoroughly.

    Seniorious has n pieces of talisman. Willem puts them in a line, the i-th of which is an integer ai.

    In order to maintain it, Willem needs to perform m operations.

    There are four types of operations:

    • l r x: For each i such that l ≤ i ≤ r, assign ai + x to ai.
    • l r x: For each i such that l ≤ i ≤ r, assign x to ai.
    • l r x: Print the x-th smallest number in the index range [l, r], i.e. the element at the x-th position if all the elements ai such thatl ≤ i ≤ r are taken and sorted into an array of non-decreasing integers. It's guaranteed that 1 ≤ x ≤ r - l + 1.
    • l r x y: Print the sum of the x-th power of ai such that l ≤ i ≤ r, modulo y, i.e. .
    Input

    The only line contains four integers n, m, seed, vmax (1 ≤ n, m ≤ 105, 0 ≤ seed < 109 + 7, 1 ≤ vmax ≤ 109).

    The initial values and operations are generated using following pseudo code:


    def rnd():

    ret = seed
    seed = (seed * 7 + 13) mod 1000000007
    return ret

    for i = 1 to n:

    a[i] = (rnd() mod vmax) + 1

    for i = 1 to m:

    op = (rnd() mod 4) + 1
    l = (rnd() mod n) + 1
    r = (rnd() mod n) + 1

    if (l > r):
    swap(l, r)

    if (op == 3):
    x = (rnd() mod (r - l + 1)) + 1
    else:
    x = (rnd() mod vmax) + 1

    if (op == 4):
    y = (rnd() mod vmax) + 1

    Here op is the type of the operation mentioned in the legend.

    Output

    For each operation of types 3 or 4, output a line containing the answer.

    Examples
    input
    10 10 7 9
    output
    2
    1
    0
    3
    input
    10 10 9 9
    output
    1
    1
    3
    3
    Note

    In the first example, the initial array is {8, 9, 7, 2, 3, 1, 5, 6, 4, 8}.

    The operations are:

    • 2 6 7 9
    • 1 3 10 8
    • 4 4 6 2 4
    • 1 4 5 8
    • 2 1 7 1
    • 4 7 9 4 4
    • 1 2 7 9
    • 4 5 8 1 1
    • 2 5 7 5
    • 4 3 10 8 5
  • 相关阅读:
    python hashlib模块
    OS模块-提供对操作系统进行调用的接口
    For循环
    python --time()函数
    使用docker部署prometheus和grafana 并监控mysql 配置告警
    记换换回收一个js逆向分析
    mitmproxy 在windows上的使用
    elasticsearch_dsl 的nested
    利用谷歌插件破解今日头条的新闻ajax参数加密,新手都能懂
    aiohttp爬虫的模板,类的形式
  • 原文地址:https://www.cnblogs.com/TheRoadToTheGold/p/8076064.html
Copyright © 2011-2022 走看看