zoukankan      html  css  js  c++  java
  • NC201400 树学题解

    一.题解

    ​ 这道题又是一道换根dp板子题,代码结构与 Accumulation Degree 这道题基本一致,唯一不同的就是转移了【不过转移的时候,因为方程的原因不需要特殊考虑叶节点】

    ​ 我们先套路的设(dp[i])表示以(i)为根的子树中所有点的深度和,现在,我们来想想转移。

    ​ 我们发现,如果我们要从(i)的一个儿子v转移到i的话,以v为根的子树中的所有节点的深度都加了1,现在我们就不能够直接求值了,怎么办呢?很简单,我们发现,既然以v为根的子树中的所有节点的深度都加了1,那么,一共增加的值,不就正好是以v为根的子树中节点的个数嘛?

    ​ 所以,我们只需要再维护一个以i为根的子树的大小(siz[i])即可

    ​ 那么,我们就可以很简单的推出转移:

    (dp[i]=)(sum_{vin son(i)}(dp[v]+siz[v]))

    (siz[i]=)(1(i本身)+sum_{vin son(i)}siz[v])

    ​ 这样,我们一遍dfs就可以求出所有(dp[i])了!

    ​ 现在,我们考虑换根dp

    ​ 我们假设将根(x)换成了它的一个儿子(y),那么,同样的,改变的只是(x)(y)的子树,我们将这个"影响"修改一下即可~

    ​ 首先,(dp[i]-=(dp[v]+siz[v]))(减去v的贡献)

    ​ 然后,(siz[i]-=siz[v],siz[v]+=siz[i])(修改两个点的子树大小)

    ​ 最后,(dp[v]+=(dp[i]+siz[i]))(加上i的贡献)

    ​ 为什么是这个顺序呢?因为修改(dp[i])的时候,(dp[v])(siz[v])必须和以前一样(因为我们是从这两个值转移过来的),然后要修改(dp[v])的话,(dp[i])(siz[i])又必须是修改后,没加v的贡献的值,所以,这样安排修改顺序是很好的。(当然,你非要用其他顺序的话,我也无话可说,只是要注意修改的方法有可能会不同)

    ​ 最后,我们每次统计下以任意点为根时(dp[i])的值的最小值即可~

    ​ 代码:

    #include<bits/stdc++.h>
    #define int long long
    using namespace std;
    const int N=1e6+1;
    struct node{
        int v,nex;
    }t[N<<1];
    int dp[N],siz[N];
    int las[N],len,ans=1e17;
    inline void add(int u,int v){
        t[++len]=(node){v,las[u]},las[u]=len;
    }
    inline void dfs1(int now,int fa){
        siz[now]=1;
        for(int i=las[now];i;i=t[i].nex){
            int v=t[i].v;
            if(v!=fa){
                dfs1(v,now);
                siz[now]+=siz[v];
                dp[now]+=(dp[v]+siz[v]);
            }
        }
    }
    inline void dfs2(int now,int fa){
        ans=min(ans,dp[now]);
        for(int i=las[now];i;i=t[i].nex){
            int v=t[i].v;
            if(v!=fa){
                int pas1=siz[now],pas2=siz[v];
                int Pas1=dp[now],Pas2=dp[v];//继续偷懒
                dp[now]-=(dp[v]+siz[v]);
                siz[now]-=siz[v];siz[v]+=siz[now];
                dp[v]+=(dp[now]+siz[now]);
                dfs2(v,now);
                siz[now]=pas1,siz[v]=pas2;
                dp[now]=Pas1,dp[v]=Pas2;
            }
        }
    }
    signed main(){
        int n;
        scanf("%lld",&n);
        for(int i=1;i<n;++i){
            int u,v;
            scanf("%lld%lld",&u,&v);
            add(u,v),add(v,u);
        }
        dfs1(1,1);dfs2(1,1);
        printf("%lld",ans);
        return 0;
    }
    

    二.闲话

    ​ 其实一开始,我变量都开的是int,然而,交上去后,算了下,每次的贡献最大可以达到(n^2)水平【链】,于是发现很可能爆int,于是,我马上改成long long,然后,改完后正准备提交。。。

    ​ 恭喜通过~

    ​ 我:???

  • 相关阅读:
    监控组策略应用组策略建模
    win7加域出现桌面文件丢失和映射驱动器丢失解决办法
    通过windows server 2008 AD域服务器之组策略关闭默认windows共享
    Win 2008 R2 AD组策略统一域用户桌面背景
    Win7+Ubuntu11.10(EasyBCD硬盘安装)
    组策略复制失败排错思路实例
    Windows Server 2008 R2搭建域环境中遇到的一个小错误的解决办法
    通过windows server 2008 AD域服务器之组策略关闭默认windows共享
    无需写try/catch,也能正常处理异常
    [原]《Web前端开发修炼之道》读书笔记JavaScript部分
  • 原文地址:https://www.cnblogs.com/ThinkofBlank/p/12690211.html
Copyright © 2011-2022 走看看