zoukankan      html  css  js  c++  java
  • SFM学习

    摘自李翠http://www.cnblogs.com/serser/p/6598621.html

    SFM

    1、相机模型,内参数和外参数矩阵,相机标定;

    2、极线约束和本征矩阵;特征点提取与匹配;提取到的特征点计算本征矩阵(五对以上的点)findEssentialMat(),需啊要点对,焦距参数,cx,cy参数等;

    3、分解本征矩阵,获取相对变换R和T:     int pass_count = recoverPose(E, p1, p2, R, T, focal_length, principle_point, mask);

    4、现在已经知道了两个相机之间的变换矩阵R和T,还有每一对匹配点的坐标。三维重建就是通过这些已知信息还原匹配点在空间当中的坐标.用三角化重建三维模型;proj1和proj2分别为跟R和T相关的3*4矩阵;

    //三角化重建 triangulatePoints(proj1, proj2, p1, p2, structure);

    //××××××××××××××××××××××多目三位重建××××××××××××××××××××

    5、求第三个相机的变换矩阵:

        5.1最简单的想法,就是沿用双目重建的方法,即在第三幅图像和第一幅图像之间提取特征点,然后调用findEssentialMat和recoverPose。那么加入第四幅、第五幅,乃至更多呢?随着图像数量的增加,新加入的图像与第一幅图像的差异可能越来越大,特征点的提取变得异常困难,这时就不能再沿用双目重建的方法了。

        5.2 那么能不能用新加入的图像和相邻图像进行特征匹配呢?比如第三幅与第二幅匹配,第四幅与第三幅匹配,以此类推。当然可以,但是这时就不能继续使用findEssentialMat和recoverPose来求取相机的变换矩阵了,因为这两个函数求取的是相对变换,比如相机三到相机二的变换,而我们需要的是相机三到相机一的变换。有人说,既然知道相机二到相机一的变换,又知道相机到三到相机二的变换,不就能求出相机三到相机一的变换吗?实际上,通过这种方式,你只能求出相机三到相机一的旋转变换(旋转矩阵R),而他们之间的位移向量T,是无法求出的。这是因为上面两个函数求出的位移向量,都是单位向量,丢失了相机之间位移的比例关系。

        5.3我们要怎么解决这些问题?现在请出本文的主角——solvePnP和solvePnPRansac.根据OpenCV官方解释,该函数根据空间中的点与图像中的点的对应关系,求解相机在空间中的位置。也就是说,我知道一些空间当中点的坐标,还知道这些点在图像中的像素坐标,那么solvePnP就可以告诉我相机在空间当中的坐标。solvePnP和solvePnPRansac所实现的功能相同,只不过后者使用了随机一致性采样,使其对噪声更鲁棒,本文使用后者。有这么好的函数,怎么用于我们的三维重建呢?首先,使用双目重建的方法,对头两幅图像进行重建,这样就得到了一些空间中的点,加入第三幅图像后,使其与第二幅图像进行特征匹配,这些匹配点中,肯定有一部分也是图像二与图像一之间的匹配点,也就是说,这些匹配点中有一部分的空间坐标是已知的,同时又知道这些点在第三幅图像中的像素坐标,嗯,solvePnP所需的信息都有了,自然第三个相机的空间位置就求出来了。由于空间点的坐标都是世界坐标系下的(即第一个相机的坐标系),所以由solvePnP求出的相机位置也是世界坐标系下的,即相机三到相机一的变换矩阵.

    6、加入更多图像

    通过上面的方法得到相机三的变换矩阵后,就可以使用上一篇文章提到的triangulatePoints方法将图像三和图像二之间的匹配点三角化,得到其空间坐标。为了使之后的图像仍能使用以上方法求解变换矩阵,我们还需要将新得到的空间点和之前的三维点云融合。已经存在的空间点,就没必要再添加了,只添加在图像二和三之间匹配,但在图像一和图像三中没有匹配的点。如此反复。 
    多目重建流程 

     7、多目重建的累积误差解决?BA方法,如何求解BA?总体思想是使用梯度下降,比如高斯-牛顿迭代、Levenberg-Marquardt算法等

  • 相关阅读:
    UVA 10600 ACM Contest and Blackout(次小生成树)
    UVA 10369
    UVA Live 6437 Power Plant 最小生成树
    UVA 1151 Buy or Build MST(最小生成树)
    UVA 1395 Slim Span 最小生成树
    POJ 1679 The Unique MST 次小生成树
    POJ 1789 Truck History 最小生成树
    POJ 1258 Agri-Net 最小生成树
    ubuntu 用法
    ubuntu 搭建ftp服务器,可以通过浏览器访问,filezilla上传文件等功能
  • 原文地址:https://www.cnblogs.com/Tigerwang1218/p/7253712.html
Copyright © 2011-2022 走看看