zoukankan      html  css  js  c++  java
  • Uniform Generator

    手动模拟一下就出来了

    Uniform Generator

    Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other)
    Total Submission(s) : 16   Accepted Submission(s) : 6

    Font: Times New Roman | Verdana | Georgia

    Font Size: ← →

    Problem Description

    Computer simulations often require random numbers. One way to generate pseudo-random numbers is via a function of the form

    seed(x+1) = [seed(x) + STEP] % MOD

    where '%' is the modulus operator.

    Such a function will generate pseudo-random numbers (seed) between 0 and MOD-1. One problem with functions of this form is that they will always generate the same pattern over and over. In order to minimize this effect, selecting the STEP and MOD values carefully can result in a uniform distribution of all values between (and including) 0 and MOD-1.

    For example, if STEP = 3 and MOD = 5, the function will generate the series of pseudo-random numbers 0, 3, 1, 4, 2 in a repeating cycle. In this example, all of the numbers between and including 0 and MOD-1 will be generated every MOD iterations of the function. Note that by the nature of the function to generate the same seed(x+1) every time seed(x) occurs means that if a function will generate all the numbers between 0 and MOD-1, it will generate pseudo-random numbers uniformly with every MOD iterations.

    If STEP = 15 and MOD = 20, the function generates the series 0, 15, 10, 5 (or any other repeating series if the initial seed is other than 0). This is a poor selection of STEP and MOD because no initial seed will generate all of the numbers from 0 and MOD-1.

    Your program will determine if choices of STEP and MOD will generate a uniform distribution of pseudo-random numbers.

    Input

    Each line of input will contain a pair of integers for STEP and MOD in that order (1 <= STEP, MOD <= 100000).

    Output

    For each line of input, your program should print the STEP value right- justified in columns 1 through 10, the MOD value right-justified in columns 11 through 20 and either "Good Choice" or "Bad Choice" left-justified starting in column 25. The "Good Choice" message should be printed when the selection of STEP and MOD will generate all the numbers between and including 0 and MOD-1 when MOD numbers are generated. Otherwise, your program should print the message "Bad Choice". After each output test set, your program should print exactly one blank line.

    Sample Input

    3 5
    15 20
    63923 99999
    

    Sample Output

             3         5    Good Choice
    
            15        20    Bad Choice
    
         63923     99999    Good Choice
    


    AC之前你是肯定要PE的,至于几次就看你EQ了

    #include<stdio.h>
    #include<string.h>

    #define N 100008

    int main()
    {
        int seed[N], step, mod, i, div[N];

        while(scanf("%d%d", &step, &mod) != EOF)
        {
            memset(div, 0, sizeof(div));
            memset(seed, 0, sizeof(seed));
            seed[0] = 0;
            for(i = 0; i < N-1; i++)
            {
                seed[i+1] = (seed[i] + step) % mod;
                div[seed[i+1]] = 1; // 把出现过的余数置为1;
                if(seed[i+1] == seed[0])
                    break;
            }
            printf("%10d%10d", step, mod);
            for(i = 0; i < mod; i++)
            {
                if(div[i] == 0) //看这个数是否出现过
                    break;
            }
            if(i < mod)
                printf("    Bad Choice ");
            else
                printf("    Good Choice ");
        }
    }

    ideas:

    越来越发现so easy 了。只要你thinking~~~
    让未来到来 让过去过去
  • 相关阅读:
    SpringBoot构建大数据开发框架
    阿里云 docker连接总报超时 registry.cn-hangzhou.aliyuncs.com (Client.Timeout exceeded while awaiting headers
    这些保护Spring Boot 应用的方法,你都用了吗?
    那些年让你迷惑的阻塞、非阻塞、异步、同步
    spring data jpa 分页查询
    如何在Windows 10上运行Docker和Kubernetes?
    Spring Mvc和Spring Boot配置Tomcat支持Https
    Why I don't want use JPA anymore
    Spring Data JPA Batch Insertion
    MySQL 到底能不能放到 Docker 里跑?
  • 原文地址:https://www.cnblogs.com/Tinamei/p/4455772.html
Copyright © 2011-2022 走看看