zoukankan      html  css  js  c++  java
  • lightoj1094

    1094 - Farthest Nodes in a Tree
    Time Limit: 2 second(s) Memory Limit: 32 MB

    Given a tree (a connected graph with no cycles), you have to find the farthest nodes in the tree. The edges of the tree are weighted and undirected. That means you have to find two nodes in the tree whose distance is maximum amongst all nodes.

    Input

    Input starts with an integer T (≤ 10), denoting the number of test cases.

    Each case starts with an integer n (2 ≤ n ≤ 30000) denoting the total number of nodes in the tree. The nodes are numbered from 0 to n-1. Each of the next n-1 lines will contain three integers u v w (0 ≤ u, v < n, u ≠ v, 1 ≤ w ≤ 10000) denoting that node u and v are connected by an edge whose weight is w. You can assume that the input will form a valid tree.

    Output

    For each case, print the case number and the maximum distance.

    Sample Input

    Output for Sample Input

    2

    4

    0 1 20

    1 2 30

    2 3 50

    5

    0 2 20

    2 1 10

    0 3 29

    0 4 50

    Case 1: 100

    Case 2: 80

    Notes

    Dataset is huge, use faster i/o methods.


    PROBLEM SETTER: JANE ALAM JAN
     

    题意:给定若干两点间的距离,求两点的距离的最大距离。即?树的直径,据说找到离任意一点最远的点index,然后找离index最远的点就是最大距离?

    假定0为根节点找离0最远的点就是,最深的点index,然后找离index最远的点就是树上最远的距离

     1 #include <cstdio>
     2 #include <cstring>
     3 #include <algorithm>
     4 
     5 using namespace std;
     6 
     7 #define N 30008
     8 
     9 struct node
    10 {
    11     int v, w, next;
    12 }e[N*4];
    13 
    14 int n, cnt, maxx;
    15 int Index;   // 写成index过不了lightoj=·=||
    16 int head[N], dist[N];
    17 
    18 void addedge(int u, int v, int w)
    19 {
    20     e[cnt].v = v;
    21     e[cnt].w = w;
    22     e[cnt].next = head[u];
    23     head[u] = cnt++;
    24 }
    25 
    26 void dfs(int u, int w)
    27 {
    28     dist[u] = w;
    29     if(w > maxx)
    30     {
    31         maxx = dist[u];
    32         Index = u;
    33     }
    34     for(int i = head[u]; i != -1; i = e[i].next)
    35     {
    36         if(dist[e[i].v] == -1)
    37         {
    38             dfs(e[i].v, dist[u]+e[i].w);
    39         }
    40     }
    41 }
    42 int main()
    43 {
    44     int t, u, v, w, k = 1;
    45 
    46     scanf("%d", &t);
    47 
    48     while(t--)
    49     {
    50         cnt = maxx = 0;
    51         memset(head, -1, sizeof(head));
    52 
    53         scanf("%d", &n);
    54         n--;
    55         while(n--)
    56         {
    57             scanf("%d%d%d", &u, &v, &w);
    58             addedge(u, v, w);
    59             addedge(v, u, w);
    60         }
    61         memset(dist, -1, sizeof(dist));
    62         dfs(0, 0);
    63         memset(dist, -1, sizeof(dist));
    64         dfs(Index, 0);
    65         printf("Case %d: %d
    ", k++, maxx);
    66     }
    67     return 0;
    68 }

    bfs

     1 #include <cstdio>
     2 #include <cstring>
     3 #include <algorithm>
     4 #include <queue>
     5 
     6 using namespace std;
     7 
     8 #define N 30008
     9 
    10 struct node
    11 {
    12     int v, w, next;
    13 } e[N*2];
    14 
    15 int n, cnt, maxx;
    16 int Index;
    17 int head[N], dist[N], vis[N];
    18 
    19 void addedge(int u, int v, int w)
    20 {
    21     e[cnt].v = v;
    22     e[cnt].w = w;
    23     e[cnt].next = head[u];
    24     head[u] = cnt++;
    25 }
    26 
    27 void bfs(int u)
    28 {
    29     memset(vis, 0, sizeof(vis));
    30     queue<int> Q;
    31     Q.push(u);
    32     vis[u] = 1;
    33     dist[u] = 0;
    34 
    35     while(Q.size())
    36     {
    37         u = Q.front();
    38         Q.pop();
    39 
    40         for(int i = head[u]; i != -1; i = e[i].next)
    41         {
    42             int v = e[i].v;
    43             if(!vis[v])
    44             {
    45                 vis[v] = 1;
    46                 dist[v] = dist[u]+e[i].w;
    47                 if(dist[v] > maxx)
    48                 {
    49                     maxx = dist[v];
    50                     Index = v;
    51 
    52                 }
    53                 Q.push(v);
    54             }
    55         }
    56     }
    57 }
    58 
    59 int main()
    60 {
    61     int t, u, v, w, k = 1;
    62     scanf("%d", &t);
    63 
    64     while(t--)
    65     {
    66         maxx = cnt = 0;
    67         memset(head, -1,sizeof(head));
    68 
    69         scanf("%d", &n);
    70         n--;
    71 
    72         while(n--)
    73         {
    74             scanf("%d%d%d", &u, &v, &w);
    75             addedge(u, v, w);
    76             addedge(v, u, w);
    77         }
    78         memset(dist, 0, sizeof(dist));
    79         bfs(0);
    80         bfs(Index);
    81         printf("Case %d: %d
    ", k++, maxx);
    82     }
    83     return 0;
    84 }
    让未来到来 让过去过去
  • 相关阅读:
    DataTable Clone()方法和Copy()方法的区别
    element-ui的使用
    解决VS Code 软件PowerShell执行策略问题
    Vue-Router
    Vue的生命周期
    vue-cli脚手架和webpack
    Vue组件
    Vue基本用法和指令
    ES6常用语法
    前端-Bootstrap框架
  • 原文地址:https://www.cnblogs.com/Tinamei/p/4739674.html
Copyright © 2011-2022 走看看