Swap
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2152 Accepted Submission(s): 764
Special Judge
Problem Description
Given an N*N matrix with each entry equal to 0 or 1. You can swap any two rows or any two columns. Can you find a way to make all the diagonal entries equal to 1?
Input
There are several test cases in the input. The first line of each test case is an integer N (1 <= N <= 100). Then N lines follow, each contains N numbers (0 or 1), separating by space, indicating the N*N matrix.
Output
For each test case, the first line contain the number of swaps M. Then M lines follow, whose format is “R a b” or “C a b”, indicating swapping the row a and row b, or swapping the column a and column b. (1 <= a, b <= N). Any correct answer will be accepted, but M should be more than 1000.
If it is impossible to make all the diagonal entries equal to 1, output only one one containing “-1”.
If it is impossible to make all the diagonal entries equal to 1, output only one one containing “-1”.
Sample Input
2
0 1
1 0
2
1 0
1 0
Sample Output
1
R 1 2
-1
Source
题意:如果可以交换行列,问主对角线能不能全为1
分析:要想主对角线全为1很明显要有N个行列不想同的点就行了,可以用二分图匹配计算出来多能有几个。如果小与N就不能。输出要是对的就行,不必和答案一样
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 5 using namespace std; 6 7 #define N 1100 8 9 int n, vis[N], used[N], a[N], b[N]; 10 int maps[N][N]; 11 12 int found(int u) 13 { 14 for(int i = 1; i <= n; i++) 15 { 16 if(!vis[i] && maps[u][i]) 17 { 18 vis[i] = 1; 19 if(!used[i] || found(used[i])) 20 { 21 used[i] = u; 22 return true; 23 } 24 } 25 } 26 return false; 27 } 28 int main() 29 { 30 int w; 31 32 while(scanf("%d", &n) != EOF) 33 { 34 memset(vis, 0, sizeof(vis)); 35 memset(used, 0, sizeof(used)); 36 memset(maps, 0, sizeof(used)); 37 memset(a, 0, sizeof(a)); 38 memset(b, 0, sizeof(b)); 39 40 int ans = 0; 41 42 for(int i = 1; i <= n; i++) 43 for(int j = 1; j <= n; j++) 44 scanf("%d", &maps[i][j]); 45 46 for(int i = 1; i <= n; i++) 47 { 48 memset(vis, 0, sizeof(vis)); 49 if(found(i)) 50 ans++; 51 } 52 if(ans < n) 53 { 54 printf("-1 "); 55 continue; 56 } 57 58 w = 0; 59 for(int i = 1; i <= n; i++) 60 { 61 while(used[i] != i) 62 { 63 a[w] = i; 64 b[w] = used[i]; 65 swap(used[a[w]], used[b[w]]); // 如果该行匹配不是自身,就交换匹配。 66 w++; 67 } 68 } 69 printf("%d ", w); 70 for(int i = 0; i < w; i++) 71 printf("C %d %d ", a[i], b[i]); 72 73 } 74 return 0; 75 }