zoukankan      html  css  js  c++  java
  • Swap——hdu 2819

    Swap

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 2152    Accepted Submission(s): 764
    Special Judge


    Problem Description
    Given an N*N matrix with each entry equal to 0 or 1. You can swap any two rows or any two columns. Can you find a way to make all the diagonal entries equal to 1?
     
    Input
    There are several test cases in the input. The first line of each test case is an integer N (1 <= N <= 100). Then N lines follow, each contains N numbers (0 or 1), separating by space, indicating the N*N matrix.
     
    Output
    For each test case, the first line contain the number of swaps M. Then M lines follow, whose format is “R a b” or “C a b”, indicating swapping the row a and row b, or swapping the column a and column b. (1 <= a, b <= N). Any correct answer will be accepted, but M should be more than 1000.

    If it is impossible to make all the diagonal entries equal to 1, output only one one containing “-1”. 
     
    Sample Input
    2
    0 1
    1 0
    2
    1 0
    1 0
     
    Sample Output
    1 R 1 2 -1
     
    Source
     
     题意:如果可以交换行列,问主对角线能不能全为1
    分析:要想主对角线全为1很明显要有N个行列不想同的点就行了,可以用二分图匹配计算出来多能有几个。如果小与N就不能。输出要是对的就行,不必和答案一样
     
     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 
     5 using namespace std;
     6 
     7 #define N 1100
     8 
     9 int n, vis[N], used[N], a[N], b[N];
    10 int maps[N][N];
    11 
    12 int found(int u)
    13 {
    14     for(int i = 1; i <= n; i++)
    15     {
    16         if(!vis[i] && maps[u][i])
    17         {
    18             vis[i] = 1;
    19             if(!used[i] || found(used[i]))
    20             {
    21                 used[i] = u;
    22                 return true;
    23             }
    24         }
    25     }
    26     return false;
    27 }
    28 int main()
    29 {
    30     int w;
    31 
    32     while(scanf("%d", &n) != EOF)
    33     {
    34         memset(vis, 0, sizeof(vis));
    35         memset(used, 0, sizeof(used));
    36         memset(maps, 0, sizeof(used));
    37         memset(a, 0, sizeof(a));
    38         memset(b, 0, sizeof(b));
    39 
    40         int ans = 0;
    41 
    42         for(int i = 1; i <= n; i++)
    43             for(int j = 1; j <= n; j++)
    44                 scanf("%d", &maps[i][j]);
    45 
    46         for(int i = 1; i <= n; i++)
    47         {
    48             memset(vis, 0, sizeof(vis));
    49             if(found(i))
    50                 ans++;
    51         }
    52         if(ans < n)
    53         {
    54             printf("-1
    ");
    55             continue;
    56         }
    57 
    58         w = 0;
    59         for(int i = 1; i <= n; i++)
    60         {
    61             while(used[i] != i)
    62             {
    63                 a[w] = i;
    64                 b[w] = used[i];
    65                 swap(used[a[w]], used[b[w]]);  // 如果该行匹配不是自身,就交换匹配。
    66                 w++;
    67             }
    68         }
    69         printf("%d
    ", w);
    70         for(int i = 0; i < w; i++)
    71             printf("C %d %d
    ", a[i], b[i]);
    72 
    73     }
    74     return 0;
    75 }
    让未来到来 让过去过去
  • 相关阅读:
    MySQL与Oracle数据库差异对比
    阿里ECS服务器远程桌面访问报错
    单分派和多分派
    博客主题
    论文阅读:LIC-Fusion: LiDAR-Inertial-Camera Odometry
    如何科研(自动化所 张世峰)
    读论文
    SLAM十四讲第二版项目代码总结
    LeetCode 982. Triples with Bitwise AND Equal To Zero
    论文阅读:Visual-Inertial Localization With Prior LiDAR Map Constraints
  • 原文地址:https://www.cnblogs.com/Tinamei/p/4740610.html
Copyright © 2011-2022 走看看