zoukankan      html  css  js  c++  java
  • spark-shell 中rdd常用方法

    centos 7.2     spark 2.3.3      scala 2.11.11    java 1.8.0_202-ea

    spark-shell中为scala语法格式

    1.distinct 去重

    val c = sc.parallerlize(List("Gnu","Cat","Rat","Dog","Gnu","Rat"),2)      初始化rdd,将数据均匀加载到2个partition中

    c.distinct.collect

    >>res1: Array[String]=Array(Dog,Gnu,Cat,Rat)

    2.  c.fisrt                                                                                                 

    first取RDD第一个Partition中的第一个记录

    >>res2:String = Gnu 

    3.filter  过滤

    val a = sc.parallelize(1 to 10,3)

    val b = a.filter(_ % 2 ==0)

    b.collect

    >>res3:Array[Int] = Array(2,4,6,8,10)

    4.filterByRange          返回指定范围内RDD记录,只能作用于排序RDD

    val randRDD = sc.parallelize(List((2,"cat"),(6,"mouse"),(7,"cup),(3,"book"),(4,"tv"),(1,"screen"),(5,"heater")),3)

    val sortedRDD = randRDD.sortByKey()

    sortRDD.filterByRange(1,3).collect

    >>res4:Array[(Int,String)] = Array((1,screen),(2,cat),(3,book))

    5.foreach                    遍历RDD内每个记录

    val c = sc.parallelize(List("cat","dog","tiger","lion","gnu"),3)

    c.foreach(x => println(x + "is ym"))

    >>lion is ym

    gnu is ym

    cat is ym

    tiger is ym

    dog is ym

    6.foreachPartition        遍历RDD内每一个Partition(每个Partition对应一个值)

    val b = sc.parallelize(List(1,2,3,4,5,6,7,8),3)

    b.foreachPartition(x => println(x.reduce(_ + _ )))

    >> 6

    15

    15

    7.fullOuterJoin

    rdd1.fullOuterJoin[rdd2]         对两个PairRDD进行外连接 ,相同的key值的全部value组合,没有相同key的也保留,值用None填充

    val pairRDD1 = sc.parallelize(List(("cat",2),("cat",5),("book",40)))

    val pairRDD2 = sc.parallelize(List(("cat",2),("cup",5),("book",40)))

    pairRDD1.fullOuterJoin(pairRDD2).collect

    >>res5: Array[(String,(Option[Int],Option[Int]))] = Array((book,(Some(40),Some(40))),  (cup,(None,Some(5))),  (cat,(Some(2),Some(2))),  (cat,(Some(5),Some(2)))

    8.groupBy   根据给定的规则 来分组

    val a = sc.parallelize(1 to 9,3)

    a.groupBy(x => {if (x % 2 == 0) "even" else "odd" }).collect

    >> res6:Array[(String,Seq[Int])] = Array((even,ArrayBuffer(2,4,6,8)),(odd,ArrayBuffer(1,3,5,7,9)))

    groupBy中使用的方法函数写法还可写作:

    def myfunc(a:Int):Int = 

    {

    a % 2

    }

    a.groupBy(myfunc).collect

    def myfunc(a:Int):Int=

    {

    a % 2

    }

    a.groupBy(x => myfunc(x),3).collect

    a.groupBy(myfunc(_),1).collect

    例  将groupBy的条件设置为 partition ,同时自定义数据分区的规则

    package sometest
    import org.apache.spark.SparkConf
    import org.apache.spark.SparkContext

    object SparkApplication{
      def main(args:Array[String]){
        val conf = new SparkConf()
        val sc = new SparkContext(conf).setAppName("GroupPartition").setMaster("spark://master:7077")
        val a = sc.parallelize(1 to 9 , 3)
        val p = new MyPartitioner()
        val b = a.groupBy((x:Int) => {x},p) //这里按照自定义分区规则P重新分区,然后groupBy
       // b的形式为RDD[(Int,Iterable[Int])] 比如说 (1,CompactBuffer(1))

        def myfunc(index:Int,iter:Iterator[(Int,Iterable[Int])]): Iterator[(Int,(Iterable[Int],Int))] = {
          iter.map(a => (index,(a._2,a._1))) //a._2这种写法表示a中的第2个元素
        }
        val c = b.mapPartitionsWithIndex(myfunc)
        println("This is Result for My :")
        c.collect().foreach(println)
    }



    自定义分区规则
    package sometest
    import org.apache.spark.Partitioner

    /**
    *自定义数据分区规则
    **/
    class MyPartitioner extends Partitioner{
      def numPartitions:Int = 2 //设置分区数
      def getPartition(key:Any):Int =
      {
        val code = key match
          {
            case null => 0
            case key:Int => key % numPartitions //取余
            case _ => key.hashCode % numPartitions
          }
        if(code < 0 ){ // 对 hashCode为负数的结果进行处理
                code + numPartitions  
                }
        else{
            code
          }
      }
      override def equals(other:Any):Boolean = // java标准的判断相等的函数, Spark内部比较两个RDD的分区是否一样时 会用到这个这个函数
      {
        other match
        {
          case h:MyPartitioner => h.numPartitions == numPartitions
          case _ => false
        }
      }
    }

    打包成sparkAction.jar后 使用命令执行  spark-submit  --class sometest.SparkApplication  ~/sparkAction.jar

    输出结果为:

    This is Result for My :
    (0,(CompactBuffer(4),4))
    ( 0,( CompactBuffer(6),6))
    ( 0,( CompactBuffer(8),8))
    ( 0,( CompactBuffer(2),2))
    ( 0,( CompactBuffer(1),1))
    ( 0,( CompactBuffer(3),3))
    ( 0,( CompactBuffer(7),7))
    ( 0,( CompactBuffer(9),9))
    ( 0,( CompactBuffer(5),5))

     
    9.groupByKey [Pair]
    类似于groupBy ,不过函数作用于key,而groupBy的函数是作用于每个数据的
    val a = sc.parallelize(List("dog","tiger","lion","cat","spider","eagle"),2)
    val b = a.keyBy(_.length)
    b.groupByKey.collect

    输出res11:Array[(Int,Iterable[String])] = Array((4,CompactBuffer(lion)),(6,CompactBuffer(spider)),(3,CompactBuffer(dog,cat)),(5,CompactBuffer(tiger,eagle)))





    10 .histogram[Double] 计算数据直方图 (数值数据分布的精确图形表示)

    计算给定数据中的最大值和最小值 ,然后将这个范围段平均分成n组,统计给定数据中每组的频数
    一般来说,范围段为横轴 ,各组的统计个数为纵坐标

    val a = sc.parallelize(List(1.1,1.2,1.3,2.0,2.1,7.4,7.5,7.6,8.8,9.0),3)
    a.histogram(5) //将样本数据分成 5 组
    res11: (Array[Double],Array[Long]) = (Array(1.1,2.68,4.26,5.84,7.42,9.0),Array(5,0,0,1,4))



    11 .intersection 返回两个RDD的交集(内连接)
    val x=sc.parallelize(1 to 20)
    val y =sc.parallelize(10 to 30)
    val z = x.intersection(y)
    z.collect
    res74: Array[Int] = Array(16,17,18,10,19,11,20,12,13,14,15)

    内连接
    val a = sc.parallelize(List("dog","salmon","salmon","rat","elephant"),3)
    val b = a.keyBy(_.length) //Array[(Int,String)]=Array((3,dog),(3,rat),(6,salmon),(6(salmon),(8,elephant))
    val c = sc.parallelize(List("dog","cat","gnu","salmon","rabbit","turkey","wolf",bear","bee"),3)

    val d = c.keyBy(_.length)
    b.join(d).collect
    输出 res0: Array[(Int,(String,String))] = Array((6,(salmon,salmon)), (6,(salmon,rabbit)),(6,(salmon.turkey)), (6,(salmon,salmon)),
    (6,(salmon,rabbit)), (6,(salmon,turkey)), (3,(dog,dog)), (3,(dog,cat)), (3,(dog,gnu)) ,(3,(dog,bee)), (3,(rat,dog)),(3,(rat,cat)), (3,(rat,gnu)), (,(rat,bee)))


    12 .keys[Pair] 返回 key,value列表中的所有key

    val a = sc.parallelize(List((3,"dog"),(5,"tiger"),(4,"lion"),(3,"cat"),(7,"panther"),(5,"eagle")),2)
    a.keys.collect
    res2: Array[Int] = Array(3,5,4,3,7,5)


    13 . lookup 查找指定记录
    val a = sc.parallelize(List((3,"dog"),(5,"tiger"),(4,"lion"),(3,"cat"),,(7,"panther"),(5,"eagle")),2)
    a.lookup(5)
    res8: Seq[String] = WrappedArray(tiger,eagle)

    14 .max 返回最大值
    借用上述的a
    a.max
    res9: (Int,String) = (7,panther)

    val y =sc.parallelize(10 to 30)
    y.max
    res10: Int = 30
    15 . mean 平均值
    y.mean
    res13: Double = 20.0


    16 . persist,cache 设置RDD的存储级别
    val c = sc.parallelize(List("Gnu","Cat","Rat","Dog","Gnu","Rat"),2)
    c.getStorageLevel
    res14: org.apache.spark.storage.StorageLevel = StorageLevel(1 replicas)
    c.cache
    res15: c.type = ParallelCollectionRDD[41] at parallelize at <console>:24
    c.getStorageLevel
    res16:org.apache.spark.storage.StorageLevel = StorageLevel(memory, deserialized, 1 replicas)


    17 . sample 根据给定比例对数据进行采样
    sample(withReplacement, fraction, seed)
    withReplacement : 是否使用随机数替换
    fraction : 对数据进行采样的比例
    seed : 随机数生成器种子
    val a = sc.parallelize(1 to 10000,3)
    a.sample(false,0.1,0).count
    res17:Long = 1032

    a.sample(true,0.3,0).count
    res18: Long = 3110

    a.sample(true,0.3,13).count
    res20 : Long = 2952


    18 .saveAsTextFile保存到文本数据 (默认 文件系统是hdfs)
    textFile读取文本数据

    val a = sc.parallelize(11 to 19,3)
    a.saveAsTextFile("test/tf") //实际上是保存到文件夹 test/tf ,由于并行化因子为3,一个Partition对应一个par-000x
    val b = sc.textFile("test/tf")
    b.collect
    res4: Array[String] = Array(11,12,13,14,15,16,17,18,19)


    19 .take 返回数据集中的前N个数据
    val b = sc.parallelize(List("dog","cat","ape","salmon","gnu"),2)
    b.take(2)
    res5: Array[String] = Array(dog,cat)


    20 .union,++ 对两个RDD数据进行并集 ,合并两个RDD
    val a = sc.parallelize( 1 to 5,1)
    val b = sc.parallelize(5 to 7,1)
    (a++b).collect
    Array[Int] = Array(1,2,3,4,5,5,6,7)







  • 相关阅读:
    2017-2018-1 20155232 《信息安全系系统设计基础》实验四
    2017-2018-1 20155232 《信息安全技术》课上测试未提交补充博客
    2017-2018-1 20155232 《信息安全系统设计基础》第十周课堂测试(ch06)补交
    《linux内核分析》第六周:分析fork函数对应的系统调用处理过程
    《Linux内核分析》第五周:分析system_call中断处理过程
    《Linux内核分析与设计》读书笔记二
    《Linux内核分析与设计实现》读书笔记一
    《Linux内核分析》第四周:扒开系统调用的三层皮
    《Linux内核分析》第三周:Linux系统启动过程
    《Linux内核分析》第二周:操作系统是如何工作的
  • 原文地址:https://www.cnblogs.com/Ting-light/p/11115455.html
Copyright © 2011-2022 走看看