zoukankan      html  css  js  c++  java
  • Codeforces 451E Devu and Flowers

    Devu wants to decorate his garden with flowers. He has purchased n boxes, where the i-th box contains fi flowers. All flowers in a single box are of the same color (hence they are indistinguishable). Also, no two boxes have flowers of the same color.

    Now Devu wants to select exactly s flowers from the boxes to decorate his garden. Devu would like to know, in how many different ways can he select the flowers from each box? Since this number may be very large, he asks you to find the number modulo (109 + 7). 

    Devu considers two ways different if there is at least one box from which different number of flowers are selected in these two ways.

    Input

    The first line of input contains two space-separated integers n and s (1 ≤ n ≤ 20, 0 ≤ s ≤ 1014).

    The second line contains n space-separated integers f1, f2, ... fn (0 ≤ fi ≤ 1012).

    Output

    Output a single integer — the number of ways in which Devu can select the flowers modulo (109 + 7).

    类似XDOJ卡尔的技能II,首先所有的情况是C(n+m-1,n)然后减去花坛中超过f[i]的,加上两个超过,减去三个的。。。

    #include <iostream>
    using namespace std;
    typedef long long LL;
    #define MOD 1000000007
    
    LL f[35],n,s;
    inline LL read()
    {
        LL x=0,f=1;
        char ch=getchar();
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    
    LL Fast_Mod(LL a,LL b,LL p)
    {
        LL res = 1,base = a;
      while (b){
        if (b & 1) res = (res * base) % p;
        base = base * base % p;
        b >>= 1;
      }
      return res;
    }
    
    LL C(LL n,LL m,LL p){
      if (n < m) return 0;
      if (m > n - m) m = n - m;
      LL s1 = 1,s2 = 1;
      for (LL i=0;i<m;i++){
        s1 = s1 * (n - i) % p;
        s2 = s2 * (i + 1) % p;
      }
    
      return s1 * Fast_Mod(s2,p-2,p) % p;
    }
    
    LL Lucas(LL n,LL m,LL p){
      if (m == 0) return 1;
      return C(n % p,m % p,p) * Lucas(n / p,m / p,p);
    }
    
    
    LL solve(){
      LL ans = 0;
    
      for (int i=0;i<(1<<n);i++){
        // cout << i << ans << endl;
        LL sign = 1,sum = s;
        for (int j=0;j<n;j++){
          if (i & (1 << j)){
            sum -= (f[j] + 1);
            sign *= -1;
          }
        }
        if (sum < 0){
          continue;
        }
        ans += sign * Lucas(sum + n - 1, n - 1, MOD);
        ans %= MOD;
      }
      return (ans + MOD) % MOD;
    }
    
    int main(){
        // freopen("test.in","r",stdin);
        n=read();s=read();
        for(int i=0;i<n;i++)
            f[i]=read();
        printf("%lld
    ", solve());
    }
    View Code
  • 相关阅读:
    找水王
    哈利波特图书购买问题
    中序线索化二叉树[C语言实现及注释]
    第一篇随文。
    理解Python函数中的的return
    记录一款实时同步的软件——Lsyncd
    for循环
    while循环
    文件操作
    我的第一个博客
  • 原文地址:https://www.cnblogs.com/ToTOrz/p/7411172.html
Copyright © 2011-2022 走看看