循环-19. 币值转换(20)
时间限制
400 ms
内存限制
65536 kB
代码长度限制
8000 B
判题程序
Standard
作者
陈建海(浙江大学)
输入一个整数(位数不超过9位)代表一个人民币值(单位为元),请转换成财务要求的大写中文格式。如23108元,转换后变成“贰万叁仟壹百零捌”元。为了简化输出,用小写英文字母a-j顺序代表大写数字0-9,用S、B、Q、W、Y分别代表拾、百、仟、万、亿。于是23108元应被转换输出为“cWdQbBai”元。
输入格式:
输入在一行中给出一个不超过9位的非负整数。
输出格式:
在一行中输出转换后的结果。注意“零”的用法必须符合中文习惯。
输入样例1:813227345
输出样例1:
iYbQdBcScWhQdBeSf
输入样例2:
6900
输出样例2:
gQjB
#include<stdio.h>
#include<math.h>
int n,s=0;
int main(void)
{
int i,j,k,p=1,flag=1;
int f(int q,int n);
scanf("%d",&n);
for(i=0;n/p>=10;i++){
p=pow(10,i);
s++;
}
if(n==0) printf("a");
if(n<10&&n>=0) s=1;
for(j=1;j<=s;j++){
switch(f(j,n)){
case 0:if(j!=s&&j!=s-4){
if(f(j+1,n)==0) flag=0;
else flag=1;
if(flag)printf("a");break;
};break;
case 1:printf("b");break;
case 2:printf("c");break;
case 3:printf("d");break;
case 4:printf("e");break;
case 5:printf("f");break;
case 6:printf("g");break;
case 7:printf("h");break;
case 8:printf("i");break;
case 9:printf("j");break;
}
if(f(j,n)==0&&j!=s&&j!=s-4) continue;
else{
if(s==9&&j==5){
if(f(2,n)==0&&f(3,n)==0&&f(4,n)==0&&f(5,n)==0)
continue;
}
switch(s-j){
case 1:printf("S");break;
case 2:printf("B");break;
case 3:printf("Q");break;
case 4:printf("W");break;
case 5:printf("S");break;
case 6:printf("B");break;
case 7:printf("Q");break;
case 8:printf("Y");break;
}
}}
return 0;
}
int f(int q,int n)
{
int k,a;
if(q==1) k=n/pow(10,s-1);
else{
a=n/pow(10,s-q+1);
k=n/pow(10,s-q)-a*10;
}
return k;
}
结构-05. 有理数均值(20)
时间限制
400 ms
内存限制
65536 kB
代码长度限制
8000 B
判题程序
Standard
作者
乔林(清华大学)
本题要求编写程序,计算N个有理数的平均值。
输入格式:
输入第1行给出正整数N(<=100);第2行中按照“a1/b1 a2/b2 ……”的格式给出N个分数形式的有理数,其中分子和分母全是整形范围内的整数;如果是负数,则负号一定出现在最前面。
输出格式:
在一行中按照“a/b”的格式输出N个有理数的平均值。注意必须是该有理数的最简分数形式,若分母为1,则只输出分子。
输入样例1:4
1/2 1/6 3/6 -5/10
输出样例1:
1/6
输入样例2:
2
4/3 2/3
输出样例2:
1
代码:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<cmath>
#include<assert.h>
using namespace std;
typedef long long ll;
int gcd(int n,int m) //gcd
{
if(n==0&&m==0) return 1;
if(n==0) return m;
if(m==0) return n;
if(n<m)
{
int tmp=m;
m=n;
n=tmp;
}
int rem=n%m;
while(rem!=0)
{
n=m;
m=rem;
rem=n%m;
}
return m;
}
struct num //struct
{
int n1;
char n2;
int n3;
int res;
};
int main()
{
int n,temp;
cin>>n;
ll mul=1;
num *nu=new num[n+1];
for(int i=0;i<n;i++)
{
cin>>nu[i].n1>>nu[i].n2>>nu[i].n3;
if(nu[i].n1==0)
{
nu[i].n3=1;
}
else //处理
{
temp=gcd(abs(nu[i].n1),abs(nu[i].n3));
nu[i].n1/=temp;
nu[i].n3/=temp;
}
}
for(int i=0;i<n;i++)
{
mul*=nu[i].n3;
}
ll sum=0;
for(int i=0;i<n;i++)
{
nu[i].res=mul/(nu[i].n3)*(nu[i].n1);
sum+=nu[i].res;
}
ll tmpa=gcd(abs(sum),abs(n*mul));
ll r1=(sum)/tmpa,r2;
if((mul*n)>=tmpa)
{
r2=(mul*n)/tmpa;
}
if(r1%r2==0)
cout<<r1/r2<<endl;
else
cout<<r1<<'/'<<r2<<endl;
return 0;
}版权声明:本文为博主原创文章,未经博主允许不得转载。