zoukankan      html  css  js  c++  java
  • pat 1019. General Palindromic Number (20)

    1019. General Palindromic Number (20)

    时间限制
    400 ms
    内存限制
    65536 kB
    代码长度限制
    16000 B
    判题程序
    Standard
    作者
    CHEN, Yue

    A number that will be the same when it is written forwards or backwards is known as a Palindromic Number. For example, 1234321 is a palindromic number. All single digit numbers are palindromic numbers.

    Although palindromic numbers are most often considered in the decimal system, the concept of palindromicity can be applied to the natural numbers in any numeral system. Consider a number N > 0 in base b >= 2, where it is written in standard notation with k+1 digits ai as the sum of (aibi) for i from 0 to k. Here, as usual, 0 <= ai < b for all i and ak is non-zero. Then N is palindromic if and only if ai = ak-i for all i. Zero is written 0 in any base and is also palindromic by definition.

    Given any non-negative decimal integer N and a base b, you are supposed to tell if N is a palindromic number in base b.

    Input Specification:

    Each input file contains one test case. Each case consists of two non-negative numbers N and b, where 0 <= N <= 109 is the decimal number and 2 <= b <= 109 is the base. The numbers are separated by a space.

    Output Specification:

    For each test case, first print in one line "Yes" if N is a palindromic number in base b, or "No" if not. Then in the next line, print N as the number in base b in the form "ak ak-1 ... a0". Notice that there must be no extra space at the end of output.

    Sample Input 1:
    27 2
    
    Sample Output 1:
    Yes
    1 1 0 1 1
    
    Sample Input 2:
    121 5
    
    Sample Output 2:
    No
    4 4 1
    
    解:注意当n=0时的输出,应该是Yes(第一行)  0(第二行),其他的常规思路。
    代码:
    #include<iostream>
    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    int main()
    {
        int n,b;
        while(scanf("%d%d",&n,&b)==2)
        {
            int a[100],c=0;
            int temp=n;
            memset(a,0,sizeof(a));
            while(n)
            {
                a[c++]=n%b;
                n=n/b;
            }
            int i=0,j=0,ch=1;
            for(i=0,j=c-1;i<=j;i++,j--)
            {
                if(a[i]!=a[j])
                {
                    ch=0;
                    break;
                }
            }
            if(ch==0)
                printf("No
    ");
            else
                printf("Yes
    ");
            if(temp==0)
            {
                printf("0
    ");
                continue;
            }
            for(i=c-1;i>=0;i--)
            {
                if(i==c-1)
                    printf("%d",a[i]);
                else
                    printf(" %d",a[i]);
            }
            printf("
    ");
        }
    }

    版权声明:本文为博主原创文章,未经博主允许不得转载。

  • 相关阅读:
    PIE-SDK For C++栅格数据的金字塔创建
    PIE-SDK For C++栅格数据集的读写
    PIE-SDK For C++栅格数据集的读取
    PIE-SDK For C++内存栅格数据的创建
    【系列文章】数据结构与算法——图
    大小端模式
    几种常见的排序方法(C语言实现)
    WPF——数据绑定(二)绑定方法—绑定本地对象
    WPF——数据绑定(一)什么是数据绑定
    WPF多窗口传参解决方案
  • 原文地址:https://www.cnblogs.com/Tobyuyu/p/4965284.html
Copyright © 2011-2022 走看看