zoukankan      html  css  js  c++  java
  • [POJ 2135] Farm Tour

    Farm Tour
    TL: 1000ms, ML: 32Mb

    Description

    When FJ's friends visit him on the farm, he likes to show them around. His farm comprises N (1 <= N <= 1000) fields numbered 1..N, the first of which contains his house and the Nth of which contains the big barn. A total M (1 <= M <= 10000) paths that connect the fields in various ways. Each path connects two different fields and has a nonzero length smaller than 35,000. 

    To show off his farm in the best way, he walks a tour that starts at his house, potentially travels through some fields, and ends at the barn. Later, he returns (potentially through some fields) back to his house again. 

    He wants his tour to be as short as possible, however he doesn't want to walk on any given path more than once. Calculate the shortest tour possible. FJ is sure that some tour exists for any given farm.

    Input

    * Line 1: Two space-separated integers: N and M. 

    * Lines 2..M+1: Three space-separated integers that define a path: The starting field, the end field, and the path's length. 

    Output

    A single line containing the length of the shortest tour. 

    Sample Input

    4 5
    1 2 1
    2 3 1
    3 4 1
    1 3 2
    2 4 2

    Sample Output

    6
    

    Source

    【题解】
    最小费用可行流
    要去要回,就相当于从S到T流流量为2的流,求mincost
    所有边流量为1,S->1,n->T流量为2
    来一遍最小费用流即可。
    数组不够大,POJ WA了几发TAT
     1 #include <stdio.h>
     2 #include <string.h> 
     3 #include <queue>
     4 using namespace std;
     5 const int B=50010;
     6 int tot, head[B], next[B], flow[B], w[B], to[B], d[B], S, T, pre[B], bi[B], oq[B];
     7 bool vis[B];
     8 int n,m;
     9 queue<int> q;
    10 inline void add(int u,int v,int _w,int _flow) {
    11     to[tot]=v; flow[tot]=_flow; w[tot]=_w; next[tot]=head[u]; head[u]=tot++;
    12     to[tot]=u; flow[tot]=0; w[tot]=-_w; next[tot]=head[v]; head[v]=tot++;    
    13 }
    14 inline int spfa() {
    15     memset(d,0x3f3f3f3f,sizeof(d));
    16     memset(oq,0,sizeof(oq));
    17     memset(vis,0,sizeof(vis));
    18     memset(pre,-1,sizeof(pre));
    19     memset(bi,0,sizeof(bi));
    20     while(!q.empty()) q.pop();
    21     d[S]=0;
    22     vis[S]=1;
    23     pre[S]=S;
    24     q.push(S);
    25     while(!q.empty()) {
    26         int top=q.front();
    27         q.pop();
    28         vis[top]=0;
    29         oq[top]++;
    30         if(oq[top]>n+2) return -1;
    31         for (int i=head[top];i!=-1;i=next[i]) 
    32             if(flow[i]&&d[top]+w[i]<d[to[i]]) {
    33                 d[to[i]]=d[top]+w[i];
    34                 if(!vis[to[i]]) {
    35                     vis[to[i]]=1;
    36                     q.push(to[i]);
    37                 }
    38                 pre[to[i]]=top;
    39                 bi[to[i]]=i;
    40             }
    41     }
    42     if(d[T]==0x3f3f3f3f) return -1;
    43     else return d[T];
    44 }
    45 inline int mincostflow(int S,int T) {
    46     int flowx, cost;
    47     flowx=cost=0;
    48     while(1) {
    49         int minf=0x3f3f3f3f;
    50         int Spfa = spfa();
    51         if (Spfa==-1||Spfa==0x3f3f3f3f) break;
    52         for (int i=T;i!=S;i=pre[i])
    53             if (flow[bi[i]]<minf) minf=flow[bi[i]];
    54         flowx += minf;
    55         cost += Spfa*minf;
    56         for (int i=T;i!=S;i=pre[i]) {
    57             flow[bi[i]]-=minf;
    58             flow[bi[i]^1]+=minf;
    59         }
    60         //printf("--%d %d
    ",flowx,cost);
    61     }
    62     return cost;
    63 }
    64 
    65 int main() {
    66     memset(head,-1,sizeof(head));
    67     scanf("%d%d",&n,&m);
    68     for (int i=1;i<=m;++i) {
    69         int _u,_v,_w;
    70         scanf("%d%d%d",&_u,&_v,&_w);
    71         add(_u,_v,_w,1);
    72         add(_v,_u,_w,1);
    73     }
    74     // 添加源和汇 
    75     S=0, T=n+1;
    76     add(S,1,0,2);
    77     add(n,T,0,2);
    78     printf("%d
    ",mincostflow(S,T)); 
    79     return 0;
    80 }
    View Code
  • 相关阅读:
    题解 P2812 【校园网络【[USACO]Network of Schools加强版】】
    拓展卢卡斯定理(伪)
    [洛谷P3807] 【模板】卢卡斯定理
    一道使用Fibonnaci数列通项公式的趣味题目
    [洛谷P3292] [SCOI2016]幸运数字
    [洛谷P3812] 【模板】线性基
    [洛谷P3857] [TJOI2008]彩灯
    2019.06.17课件:[洛谷P1310]表达式的值 题解
    常数PK系列汇总
    关于BFS和dijkstra(2019.04.20)
  • 原文地址:https://www.cnblogs.com/TonyNeal/p/poj2135.html
Copyright © 2011-2022 走看看