zoukankan      html  css  js  c++  java
  • Poj(2135),MCMF,模板

    题目链接:http://poj.org/problem?id=2135

    Farm Tour
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 14821   Accepted: 5657

    Description

    When FJ's friends visit him on the farm, he likes to show them around. His farm comprises N (1 <= N <= 1000) fields numbered 1..N, the first of which contains his house and the Nth of which contains the big barn. A total M (1 <= M <= 10000) paths that connect the fields in various ways. Each path connects two different fields and has a nonzero length smaller than 35,000. 

    To show off his farm in the best way, he walks a tour that starts at his house, potentially travels through some fields, and ends at the barn. Later, he returns (potentially through some fields) back to his house again. 

    He wants his tour to be as short as possible, however he doesn't want to walk on any given path more than once. Calculate the shortest tour possible. FJ is sure that some tour exists for any given farm.

    Input

    * Line 1: Two space-separated integers: N and M. 

    * Lines 2..M+1: Three space-separated integers that define a path: The starting field, the end field, and the path's length. 

    Output

    A single line containing the length of the shortest tour. 

    Sample Input

    4 5
    1 2 1
    2 3 1
    3 4 1
    1 3 2
    2 4 2

    Sample Output

    6
    

    Source

     
    代码几乎是找的,太难了,我以后就用模板吧,不过还是要把模板理解清楚。
    题意:不走重边,1->n->1的最少步数。
    分析:见注释。
    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <queue>
    
    using namespace std;
    int sumFlow;
    const int MAXN = 1010;
    const int MAXM = 1000200;
    #define INF 0x3f3f3f3f
    
    struct Edge
    {
        int u;
        int v;
        int cap;
        int cost;
        int next;
    } edge[MAXM<<2];
    
    int NE;
    int head[MAXN], dist[MAXN], pre[MAXN];
    bool vis[MAXN];
    
    void addedge(int u,int v,int cap,int cost)
    {
        edge[NE].u=u;
        edge[NE].v=v;
        edge[NE].cap=cap;
        edge[NE].cost=cost;
        edge[NE].next=head[u];
        head[u]=NE++;
    
        edge[NE].u=v;       ///反的容量图
        edge[NE].v=u;
        edge[NE].cap=0;
        edge[NE].cost=-cost;
        edge[NE].next=head[v];
        head[v]=NE++;
    }
    
    bool SPFA(int s,int t,int n)
    {
        int i,u,v;
        queue<int>Q;
        memset(vis,false,sizeof(vis));
        memset(pre,-1,sizeof(pre));
        for(i=0; i<=n; i++)
            dist[i]=INF;
        vis[s]=true;
        dist[s]=0;
        Q.push(s);
        while(!Q.empty())
        {
            u=Q.front();
            Q.pop();
            vis[u]=false;
            for(i=head[u]; i!=-1; i=edge[i].next)
            {
                v=edge[i].v;
                if(edge[i].cap&&dist[v]>dist[u]+edge[i].cost)
                {
                    dist[v]=dist[u]+edge[i].cost;
                    pre[v]=i;
                    if(!vis[v])
                    {
                        Q.push(v);
                        vis[v]=true;
                    }
                }
            }
        }
        if(dist[t]==INF)
            return false;
        return true;
    }
    
    
    int MCMF(int s,int t,int n)
    {
        int flow=0; /// 总流量
        int minflow,mincost;
        mincost=0;
        while(SPFA(s,t,n))
        {
            minflow=INF+1;      ///容量瓶颈
            for(int i=pre[t]; i!=-1; i=pre[edge[i].u])
                if(edge[i].cap<minflow)
                    minflow=edge[i].cap;
            flow+=minflow;
            for(int i=pre[t]; i!=-1; i=pre[edge[i].u])
            {
                edge[i].cap-=minflow;
                edge[i^1].cap+=minflow;     ///更新残余网络,^1处理,因为0,是正边,1是反边,做^1,就能找到反边
            }
            mincost+=dist[t]*minflow;       ///这里和书上有点不一样,就是相当于一个合并同类项了,dist[t]到汇点的最少花费*瓶颈容量
        }
        sumFlow=flow; /// 最大流
        return mincost;
    }
    
    int main()
    {
        int n,m;
        int u,v,c;
        while(~scanf("%d%d",&n,&m))
        {
            NE=0;
            memset(head,-1,sizeof(head));
            int S=0;
            int T=n+1;
            while(m--)
            {
                scanf("%d%d%d",&u,&v,&c);
                addedge(u,v,1,c);
                addedge(v,u,1,c);   ///建反图,这样在SPFA里面就能回来了,
            }
            addedge(S,1,2,0);
            addedge(n,T,2,0);
            int ans=MCMF(S,T,T+1);
            printf("%d
    ",ans);
        }
        return 0;
    }
     
  • 相关阅读:
    GIS数据格式:Coverage
    GIS数据格式:Shapefile
    WMS
    openlayer调用geoserver发布的地图实现地图的基本功能
    OpenLayers 项目完整分析——(二)源代码总体结构分析
    geoserver扫盲 openlayers相关
    The connection to adb is down, and a severe error has occured
    Maven创建工程项目如何下载所需要的jar包
    转:Java学习路线图,专为新手定制的Java学习计划建议
    C# Lambda表达式使用累加器例子
  • 原文地址:https://www.cnblogs.com/TreeDream/p/5755949.html
Copyright © 2011-2022 走看看