zoukankan      html  css  js  c++  java
  • Poj(1466),最大独立集,匈牙利算法

    题目链接:http://poj.org/problem?id=1466

    Girls and Boys
    Time Limit: 5000MS   Memory Limit: 10000K
    Total Submissions: 12026   Accepted: 5355

    Description

    In the second year of the university somebody started a study on the romantic relations between the students. The relation "romantically involved" is defined between one girl and one boy. For the study reasons it is necessary to find out the maximum set satisfying the condition: there are no two students in the set who have been "romantically involved". The result of the program is the number of students in such a set.

    Input

    The input contains several data sets in text format. Each data set represents one set of subjects of the study, with the following description:

    the number of students
    the description of each student, in the following format
    student_identifier:(number_of_romantic_relations) student_identifier1 student_identifier2 student_identifier3 ...
    or
    student_identifier:(0)

    The student_identifier is an integer number between 0 and n-1 (n <=500 ), for n subjects.

    Output

    For each given data set, the program should write to standard output a line containing the result.

    Sample Input

    7
    0: (3) 4 5 6
    1: (2) 4 6
    2: (0)
    3: (0)
    4: (2) 0 1
    5: (1) 0
    6: (2) 0 1
    3
    0: (2) 1 2
    1: (1) 0
    2: (1) 0

    Sample Output

    5
    2

    Source

     
    题意:
    就是有n个人,每个人与其他的某几个人有关系,这个关系且称为浪漫关系,然后最后求一个最大的集合,使得集合中所有的人两两之间都不存在浪漫关系。
    分析:
    1、最大独立集 = 顶点数 - 最大匹配数
    2、匈牙利算法
    3、这里的男女性别没有给出,匹配关系放大一倍,那么实际的匹配数就是/2了。
     
    #include <stdio.h>
    #include <string.h>
    
    #define MAX 505
    
    int n;
    bool maps[MAX][MAX];
    bool use[MAX];
    int match[MAX];
    
    bool DFS(int stu)
    {
        int num = 0;
        for(int i=0; i<n; i++)
        {
            if(!use[i]&&maps[stu][i])
            {
                use[i] = true;
                if(match[i]==-1||DFS(match[i]))
                {
                    match[i] = stu;
                    return true;
                }
            }
        }
        return false;
    }
    
    int main()
    {
        while(scanf("%d",&n)!=EOF)
        {
            memset(match,-1,sizeof(match));
            memset(maps,false,sizeof(maps));
            for(int i=0; i<n; i++)
            {
                int u,num;
                scanf("%d: (%d)",&u,&num);
                for(int i=0; i<num; i++)
                {
                    int v;
                    scanf("%d",&v);
                    maps[u][v] = true;
                }
            }
            int num = 0;
            for(int i=0; i<n; i++)
            {
                memset(use,false,sizeof(use));
                if(DFS(i)) num++;
            }
            printf("%d
    ",n-num/2);
        }
        return 0;
    }
  • 相关阅读:
    利用python爬虫关键词批量下载高清大图
    多源最短路径算法—Floyd算法
    Dijkstra算法详细(单源最短路径算法)
    写博客没高质量配图?python爬虫教你绕过限制一键搜索下载图虫创意图片!
    并查集(不相交集合)详解与java实现
    AVL树(二叉平衡树)详解与实现
    二叉树——前序遍历、中序遍历、后序遍历、层序遍历详解(递归非递归)
    CSS基础总结
    HTML基础总结
    JavaSE 软件工程师 认证考试试卷3
  • 原文地址:https://www.cnblogs.com/TreeDream/p/5760134.html
Copyright © 2011-2022 走看看