zoukankan      html  css  js  c++  java
  • jQuery火箭图标返回顶部代码

    问题描述:

    医学研究者最近发现了某新病毒,通过对这些病毒的分析,得知他们的DNA序列都是环状的。现在研究者已收集了大量

    病毒DNA和人的DNA数据,想快速检测出这些人是否感染了相应的病毒。为了研究方便,研究者将人的DNA和病毒DNA

    均表示成由一些字母组成的字符串序列,然后检测眸中病毒DNA序列是否在患者的DNA序列中出现过,如果出现过,则

    此人感染了该病毒,否则没有感染。例如,假设病毒的DNA序列为baa,患者1的DNA序列为aaabbba,则感染;患者2的

    DNA序列为babbba,则未感染。(注意,恩德DNA序列式线性的,而病毒的DNA序列为环状的)。

    Input:

    abbab  abbabaab

    baa      cacdvcabacsd

    abc      def

    0          0

    Output:

    YES

    NO

    NO

    BF算法(即遍历法):

     1 #include "stdafx.h"
     2 #include<iostream>
     3 #include<cstring>
     4 #include<string>
     5 using namespace std;
     6 
     7 int Index_BF(const string &str1, const string &str2, int pos)
     8 {
     9 
    10     int i = pos;
    11     int j = 0;
    12     int len1 = str1.size();
    13     int len2 = str2.size();
    14     while (i<len1&&j<len2)
    15     {
    16         if (str1[i] == str2[j])
    17         {
    18             i++;
    19             j++;
    20         }
    21         else
    22         {
    23             i = i - j + 1;
    24             j = 0;
    25         }
    26     }
    27     if (j >= len2)
    28         return i - len2;
    29     else
    30         return -1;
    31 }
    32 
    33 int main()
    34 {
    35     int pos = 0;
    36     string str1;
    37     string str2;
    38     while (cin >> str2 >> str1)
    39     {
    40         if (str1 == "0"&&str2 == "0")break;
    41         int result = Index_BF(str1, str2, pos);
    42         if (result != -1)
    43             cout << "YES" << endl;
    44         else
    45             cout << "NO" << endl;
    46     }
    47     return 0;
    48 }

    KMP算法:

     1 #include "stdafx.h"
     2 #include<iostream>
     3 #include<cstring>
     4 #include<string>
     5 #include<fstream>
     6 using namespace std;
     7 
     8 void get_next(string str2,int *next)
     9 {
    10     int i,j;
    11     i=1;
    12     j=0;
    13     next[1]=0;
    14     while(i<str2.size())
    15     {
    16         if(j==0||str2[i]==str2[j])
    17         {
    18             ++i;
    19             ++j;
    20             if(str2[i]!=str2[j])
    21                 next[i]=j;
    22             else
    23                 next[i]=next[j];
    24         }
    25         else
    26             j=next[j];
    27     }
    28 }
    29 
    30 int kmp(string &str1,string &str2,int pos)
    31 {
    32 
    33     int i=pos;
    34     int j=0;
    35     int next[255];
    36     get_next(str2,next);
    37     int len1=str1.size();
    38     int len2=str2.size();
    39     while(i<len1&&j<len2)
    40     {
    41         if(j==0||str1[i]==str2[j])
    42         {
    43             i++;
    44             j++;
    45         }
    46         else
    47         {
    48             j=next[j];
    49         }
    50     }
    51         if(j>=len2)
    52             return i-len2;
    53         else
    54             return -1;
    55 }
    56 
    57 int main()
    58 {
    59     int pos=0    ;
    60     string str1;
    61     string str2;
    62     while(cin >>str2>>str1)
    63     {
    64         if(str1=="0"&&str2=="0")break;
    65     int result=kmp(str1,str2,pos);
    66     if(result!=-1)
    67         cout<<"YES"<<endl;
    68     else
    69         cout<<"NO"<<endl;
    70     }
    71     return 0;
    72 }

    对于正常的字符串模式匹配,主串长度为m,子串为n,时间复杂度会到达O(m*n),而如果用KMP算法,复杂度将会减少线型时间O(m+n)。

    设主串为ptr="ababaaababaa";,要比较的子串为a=“aab”;

    KMP算法用到了next数组,然后利用next数组的值来提高匹配速度,我首先讲一下next数组怎么求,之后再讲匹配方式。

     

    NEXT[]详解:

    next数组详解

    首先是理解KMP算法的第一个难关是next数组每个值的确定,这个问题困恼我很长时间,尤其是对照着代码一行一行分析,很容易把自己绕进去。

    定义一串字符串

    ptr = "ababaaababaa";

    next[i](i从1开始算)代表着,除去第i个数,在一个字符串里面从第一个数到第(i-1)字符串前缀与后缀最长重复的个数。

    什么是前缀?

    在“aba”中,前缀就是“ab”,除去最后一个字符的剩余字符串。

    同理可以理解后缀。除去第一个字符的后面全部的字符串。

    在“aba”中,前缀是“ab”,后缀是“ba”,那么两者最长的子串就是“a”;

    在“ababa”中,前缀是“abab”,后缀是“baba”,二者最长重复子串是“aba”;

    在“abcabcdabc”中,前缀是“abcabcdab”,后缀是“bcabcdabc”,二者最长重复的子串是“abc”;

    这里有一点要注意,前缀必须要从头开始算,后缀要从最后一个数开始算,中间截一段相同字符串是不行的。

    再回到next[i]的定义,对于字符串ptr = "ababaaababaa";

    next[1] = -1,代表着除了第一个元素,之前前缀后缀最长的重复子串,这里是空 ,即"",没有,我们记为-1,代表空。(0代表1位相同,1代表两位相同,依次累加)。

    next[2] = -1,即“a”,没有前缀与后缀,故最长重复的子串是空,值为-1;

    next[3] = -1,即“ab”,前缀是“a”,后缀是“b”,最长重复的子串“”;

    next[4] = 1,即"aba",前缀是“ab”,后缀是“ba”,最长重复的子串“a”;next数组里面就是最长重复子串字符串的个数

    next[5] = 2,即"abab",前缀是“aba”,后缀是“bab”,最长重复的子串“ab”;

    next[6] = 3,即"ababa",前缀是“abab”,后缀是“baba”,最长重复的子串“aba”;

    next[7] = 1,即"ababaa",前缀是“ababa”,后缀是“babaa”,最长重复的子串“a”;

    next[8] = 1,即"ababaaa",前缀是“ababaa”,后缀是“babaaa”,最长重复的子串“a”;

    next[9] = 2,即"ababaaab",前缀是“ababaaa”,后缀是“babaaab”,最长重复的子串“ab”;

    next[10] = 3,即"ababaaaba",前缀是“ababaaab”,后缀是“babaaaba”,最长重复的子串“aba”;

    next[11] = 4,即"ababaaabab",前缀是“ababaaaba”,后缀是“babaaabab”,最长重复的子串“abab”;

    next[12] = 5,即"ababaaababa",前缀是“ababaaabab”,后缀是“babaaaababa”,最长重复的子串“ababa”;

    还有另外一种方法,我看的有的书上写着:

    这里我们定义next[1] = 0 , next[1] = 1;

    再分析ptr字符串,ptr = "ababaaababaa";

    跟上一个的情况类似,

    next[1] = 0 ,事先定义好的

    next[2] = 1 ,事先定义好的

    next[3] = 1 ,最长重复的子串“”;1代表没有重复,2代表有一个字符重复。

    next[4] = 2 ,最长重复的子串“a”;追偿的长度加1,即为2.

    next[5] = 3 ,以下都跟之前的一样,这种方法是最长的长度再加上一就可以了。

    next[6] = 4

    next[7] = 2

    next[8] = 2

    next[9] = 3 

    next[10] = 4 

    next[11] = 5 

    next[12] = 6 

    以上是next数组的详细解释。next数组求值 是比较麻烦的,剩下的匹配方式就很简单了。

    next数组用于子串身上,根据上面的原理,我们能够推出子串a=“aab”的next数组的值分别为0,1,2.(按照我说的第二种方式算的)。

    首先开始计算主串与子串的字符,设置主串用i来表示,子串用j来表示,如果ptr[i]与a[i]相等,那么i与j就都加1:

    prt[1]与a[1]相等,i++,j++:

    用代码实现就是

    1 if( j==0 ||  ptr[i]==a[j])  
    2 {  
    3     ++i;  
    4     ++j;  
    5 }  

    ptr[2]与a[2]不相等

    此时ptr[2]!=a[2],那么令j = next[j],此时j=2,那么next[j] = next[2] = 1.那么此时j就等于1.这一段判断用代码解释的话就是:

    1 if( ptr[i]!=a[j])  
    2 {  
    3       j = next[j];  
    4 }  

    加上上面的代码进行组合:

    在对两个数组进行比对时,各自的i,j取值代码:


    1 <span style="font-size:18px;">while( i<ptr.length && j< a.length)  
    2 {  
    3      if( j==0 || ptr[i]==a[i] )  
    4     {  
    5           ++i;  
    6           ++j;</span>  
     
    1 <span style="font-size:18px;">          next[i] = j;  
    2     }  
    3     else  
    4     {  
    5           j = next[j];  
    6     }  
    7 }</span>  

    此时将a[j]置于j此时所处的位置,即a[1]放到j=2处,因为在j=2时出现不匹配的情况。

    此时再次计算是否匹配,可以看出来a[1]!=ptr[2],那么j = next[j],即此时j = next[1] = 0;

    根据上面的代码,当j=0时,执行++i;++j;

    此时就变为:

    此时ptr[3] = a[1],继续向下走,下一个又不相等了,然后“aab”向后挪一位,这里不再赘述了,主要的思想已经讲明白了。到最后一直到i = 8,j=3时匹配成功,KMP算法结束。整个过程就结束了。

    测试结果:

  • 相关阅读:
    Mysql 批量插入数据的方法
    sql server 多行合并一行
    跨服务器多库多表查询
    OPENQUERY用法以及使用需要注意的地方
    C# 判断操作系统的位数
    rpc介绍
    JavaScript decodeURI()与decodeURIComponent() 使用与区别
    UNIX 时间戳 C#
    C# winform javascript 互调用
    oracle 实例名和服务名以及数据库名区别
  • 原文地址:https://www.cnblogs.com/Trojan00/p/8831239.html
Copyright © 2011-2022 走看看