zoukankan      html  css  js  c++  java
  • JDK源码分析(1)ArrayList

    JDK版本

    ArrayList

    ArrayList简介

    ArrayList 是一个数组队列,相当于 动态数组。与Java中的数组相比,它的容量能动态增长。它继承于AbstractList,实现了List, RandomAccess, Cloneable, java.io.Serializable这些接口。
    ArrayList 继承了AbstractList,实现了List。它是一个数组队列,提供了相关的添加、删除、修改、遍历等功能。
    ArrayList 实现了RandmoAccess接口,即提供了随机访问功能。RandmoAccess是java中用来被List实现,为List提供快速访问功能的。在ArrayList中,我们即可以通过元素的序号快速获取元素对象;这就是快速随机访问。稍后,我们会比较List的“快速随机访问”和“通过Iterator迭代器访问”的效率。
    ArrayList 实现了Cloneable接口,即覆盖了函数clone(),能被克隆。
    ArrayList 实现java.io.Serializable接口,这意味着ArrayList支持序列化,能通过序列化去传输。

    和Vector不同,ArrayList中的操作不是线程安全的!所以,建议在单线程中才使用ArrayList,而在多线程中可以选择Vector或者CopyOnWriteArrayList。

    ArrayList属性

    public class ArrayList<E> extends AbstractList<E>
            implements List<E>, RandomAccess, Cloneable, java.io.Serializable
    {
    	//序列化ID
        private static final long serialVersionUID = 8683452581122892189L;
    
        //默认初始化的容量
        private static final int DEFAULT_CAPACITY = 10;
    
        //一个空数组实例
        private static final Object[] EMPTY_ELEMENTDATA = {};
    
        //一个空数组实例,如果使用默认构造函数创建,则默认对象内容默认是该值
        private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
    
        //当前数据对象存放地方,当前对象不参与序列化
        transient Object[] elementData; // non-private to simplify nested class access
    
        //当前数组的大小
        private int size;
        ...
    

    ArrayList构造函数

    无参构造函数

    //无参构造函数
        public ArrayList() {
            this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
        }
    

    带int类型的构造函数

    //带int类型的构造函数
        public ArrayList(int initialCapacity) {
            if (initialCapacity > 0) {
                this.elementData = new Object[initialCapacity];
            } else if (initialCapacity == 0) {
                this.elementData = EMPTY_ELEMENTDATA;
            } else {
                throw new IllegalArgumentException("Illegal Capacity: "+
                                                   initialCapacity);
            }
        }
    

    带Collection对象的构造函数

    //带Collection对象的构造函数
        public ArrayList(Collection<? extends E> c) {
            elementData = c.toArray();
            if ((size = elementData.length) != 0) {
                // c.toArray might (incorrectly) not return Object[] (see 6260652)
                if (elementData.getClass() != Object[].class)
                    elementData = Arrays.copyOf(elementData, size, Object[].class);
            } else {
                // replace with empty array.
                this.elementData = EMPTY_ELEMENTDATA;
            }
        }
    

    add方法

    add(E e)

    add主要的执行逻辑如下:
    1)确保数组已使用长度(size)加1之后足够存下 下一个数据
    2)修改次数modCount 标识自增1,如果当前数组已使用长度(size)加1后的大于当前的数组长度,则调用grow方法,增长数组,grow方法会将当前数组的长度变为原来容量的1.5倍。
    3)确保新增的数据有地方存储之后,则将新元素添加到位于size的位置上。
    4)返回添加成功布尔值。

    public boolean add(E e) {
            ensureCapacityInternal(size + 1);  // Increments modCount!!
            elementData[size++] = e;
            return true;
        }
    

    将修改次数(modCount)自增1,判断是否需要扩充数组长度,判断条件就是用当前所需的数组最小长度与数组的长度对比,如果大于0,则增长数组长度。

    ensureCapacityInternal

    private void ensureCapacityInternal(int minCapacity) {
            ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
        }
    

    calculateCapacity

    private static int calculateCapacity(Object[] elementData, int minCapacity) {
            if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
                return Math.max(DEFAULT_CAPACITY, minCapacity);
            }
            return minCapacity;
        }
    

    将修改次数(modCount)自增1,判断是否需要扩充数组长度,判断条件就是用当前所需的数组最小长度与数组的长度对比,如果大于0,则增长数组长度。

    ensureExplicitCapacity

    private void ensureExplicitCapacity(int minCapacity) {
            modCount++;
    
            // overflow-conscious code
            if (minCapacity - elementData.length > 0)
                grow(minCapacity);
        }
    

    如果当前的数组已使用空间(size)加1之后 大于数组长度,则增大数组容量,扩大为原来的1.5倍。

    grow

    private void grow(int minCapacity) {
            // overflow-conscious code
            int oldCapacity = elementData.length;
            int newCapacity = oldCapacity + (oldCapacity >> 1);
            if (newCapacity - minCapacity < 0)
                newCapacity = minCapacity;
            if (newCapacity - MAX_ARRAY_SIZE > 0)
                newCapacity = hugeCapacity(minCapacity);
            // minCapacity is usually close to size, so this is a win:
            elementData = Arrays.copyOf(elementData, newCapacity);
        }
    

    add(int index, E e)

    这个方法其实和上面的add类似,该方法可以按照元素的位置,指定位置插入元素,具体的执行逻辑如下:
    1)确保数插入的位置小于等于当前数组长度,并且不小于0,否则抛出异常
    2)确保数组已使用长度(size)加1之后足够存下 下一个数据
    3)修改次数(modCount)标识自增1,如果当前数组已使用长度(size)加1后的大于当前的数组长度,则调用grow方法,增长数组
    4)grow方法会将当前数组的长度变为原来容量的1.5倍。
    5)确保有足够的容量之后,使用System.arraycopy 将需要插入的位置(index)后面的元素统统往后移动一位。
    6)将新的数据内容存放到数组的指定位置(index)上

    public void add(int index, E e) {
                rangeCheckForAdd(index);
                checkForComodification();
                parent.add(parentOffset + index, e);
                this.modCount = parent.modCount;
                this.size++;
            }
    

    get方法

    返回指定位置上的元素

    public E get(int index) {
                rangeCheck(index);
                checkForComodification();
                return ArrayList.this.elementData(offset + index);
            }
    

    set方法

    确保set的位置小于当前数组的长度(size)并且大于0,获取指定位置(index)元素,然后放到oldValue存放,将需要设置的元素放到指定的位置(index)上,然后将原来位置上的元素oldValue返回给用户。

    public E set(int index, E element) {
            rangeCheck(index);
    
            E oldValue = elementData(index);
            elementData[index] = element;
            return oldValue;
        }
    

    contains方法

    调用indexOf方法,遍历数组中的每一个元素作对比,如果找到对于的元素,则返回true,没有找到则返回false。

    public boolean contains(Object o) {
            return indexOf(o) >= 0;
        }
    

    indexOf

    public int indexOf(Object o) {
            if (o == null) {
                for (int i = 0; i < size; i++)
                    if (elementData[i]==null)
                        return i;
            } else {
                for (int i = 0; i < size; i++)
                    if (o.equals(elementData[i]))
                        return i;
            }
            return -1;
        }
    

    remove方法

    根据索引remove

    1)判断索引有没有越界

    2)自增修改次数

    3)将指定位置(index)上的元素保存到oldValue

    4)将指定位置(index)上的元素都往前移动一位

    5)将最后面的一个元素置空,好让垃圾回收器回收

    6)将原来的值oldValue返回

    public E remove(int index) {
            rangeCheck(index);
    
            modCount++;
            E oldValue = elementData(index);
    
            int numMoved = size - index - 1;
            if (numMoved > 0)
                System.arraycopy(elementData, index+1, elementData, index,
                                 numMoved);
            elementData[--size] = null; // clear to let GC do its work
    
            return oldValue;
        }
    

    根据对象

    public boolean remove(Object o) {
            if (o == null) {
                for (int index = 0; index < size; index++)
                    if (elementData[index] == null) {
                        fastRemove(index);
                        return true;
                    }
            } else {
                for (int index = 0; index < size; index++)
                    if (o.equals(elementData[index])) {
                        fastRemove(index);
                        return true;
                    }
            }
            return false;
        }
    

    定位到需要remove的元素索引,先将index后面的元素往前面移动一位(调用System.arraycooy实现),然后将最后一个元素置空。

    fastRemove

    private void fastRemove(int index) {
            modCount++;
            int numMoved = size - index - 1;
            if (numMoved > 0)
                System.arraycopy(elementData, index+1, elementData, index,
                                 numMoved);
            elementData[--size] = null; // clear to let GC do its work
        }
    

    clear方法

    添加操作次数(modCount),将数组内的元素都置空,等待垃圾收集器收集,不减小数组容量。

    public void clear() {
            modCount++;
    
            // clear to let GC do its work
            for (int i = 0; i < size; i++)
                elementData[i] = null;
    
            size = 0;
        }
    

    subList方法

    我们看到代码中是创建了一个ArrayList 类里面的一个内部类SubList对象,传入的值中第一个参数时this参数,其实可以理解为返回当前list的部分视图,真实指向的存放数据内容的地方还是同一个地方,如果修改了sublist返回的内容的话,那么原来的list也会变动。

    public List<E> subList(int fromIndex, int toIndex) {
            subListRangeCheck(fromIndex, toIndex, size);
            return new SubList(this, 0, fromIndex, toIndex);
        }
    

    trimTosize方法

    1)修改次数加1
    2)将elementData中空余的空间(包括null值)去除,例如:数组长度为10,其中只有前三个元素有值,其他为空,那么调用该方法之后,数组的长度变为3.

    public void trimToSize() {
            modCount++;
            if (size < elementData.length) {
                elementData = (size == 0)
                  ? EMPTY_ELEMENTDATA
                  : Arrays.copyOf(elementData, size);
            }
        }
    

    iterator方法

    interator方法返回的是一个内部类,由于内部类的创建默认含有外部的this指针,所以这个内部类可以调用到外部类的属性。

    public Iterator<E> iterator() {
            return new Itr();
        }
    

    这里转发别人的:

    一般的话,调用完iterator之后,我们会使用iterator做遍历,这里使用next做遍历的时候有个需要注意的地方,就是调用next的时候,可能会引发ConcurrentModificationException,当修改次数,与期望的修改次数(调用iterator方法时候的修改次数)不一致的时候,会发生该异常,详细我们看一下代码实现:

    @SuppressWarnings("unchecked")
            public E next() {
                checkForComodification();
                int i = cursor;
                if (i >= size)
                    throw new NoSuchElementException();
                Object[] elementData = ArrayList.this.elementData;
                if (i >= elementData.length)
                    throw new ConcurrentModificationException();
                cursor = i + 1;
                return (E) elementData[lastRet = i];
            }
    

    expectedModCount这个值是在用户调用ArrayList的iterator方法时候确定的,但是在这之后用户add,或者remove了ArrayList的元素,那么modCount就会改变,那么这个值就会不相等,将会引发ConcurrentModificationException异常,这个是在多线程使用情况下,比较常见的一个异常。

    final void checkForComodification() {
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
            }
    

    序列化

    ArrayList基于数组实现,并且具有动态扩容特性,因此保存元素的数组不一定都会被使用,那么就没必要全部进行序列化。

    保存元素的数组elementData使用transient修饰,该关键字声明数组默认不会被序列化

    transient Object[] elementData; // non-private to simplify nested class access
    

    ArrayList实现了writeObject()和readObject()来控制只序列化数组中有元素填充那部分内容。

    private void writeObject(java.io.ObjectOutputStream s)
            throws java.io.IOException{
            // Write out element count, and any hidden stuff
            int expectedModCount = modCount;
            s.defaultWriteObject();
    
            // Write out size as capacity for behavioural compatibility with clone()
            s.writeInt(size);
    
            // Write out all elements in the proper order.
            for (int i=0; i<size; i++) {
                s.writeObject(elementData[i]);
            }
    
            if (modCount != expectedModCount) {
                throw new ConcurrentModificationException();
            }
        }
    
    private void readObject(java.io.ObjectInputStream s)
            throws java.io.IOException, ClassNotFoundException {
            elementData = EMPTY_ELEMENTDATA;
    
            // Read in size, and any hidden stuff
            s.defaultReadObject();
    
            // Read in capacity
            s.readInt(); // ignored
    
            if (size > 0) {
                // be like clone(), allocate array based upon size not capacity
                int capacity = calculateCapacity(elementData, size);
                SharedSecrets.getJavaOISAccess().checkArray(s, Object[].class, capacity);
                ensureCapacityInternal(size);
    
                Object[] a = elementData;
                // Read in all elements in the proper order.
                for (int i=0; i<size; i++) {
                    a[i] = s.readObject();
                }
            }
        }
    

    序列化时需要使用ObjectOuTputStream的writeObject()将对象转换为字节流并输出。而writeObject()方法在传入的对象存在writeObject()的时候会去反射调用该对象的writeObject()来实现序列化。反序列化使用的是ObjectInputStream的readObject()方法,原理类似。

    ArrayList list = new ArrayList(); ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream(file)); oos.writeObject(list);
    

    小结

    ArrayList总体来说比较简单,不过ArrayList还有以下一些特点:

    • ArrayList自己实现了序列化和反序列化的方法,因为它自己实现了 private void writeObject(java.io.ObjectOutputStream s)和 private void readObject(java.io.ObjectInputStream s) 方法
    • ArrayList基于数组方式实现,无容量的限制(会扩容)
    • 添加元素时可能要扩容(所以最好预判一下),删除元素时不会减少容量(若希望减少容量,trimToSize()),删除元素时,将删除掉的位置元素置为null,下次gc就会回收这些元素所占的内存空间
    • 线程不安全
    • add(int index, E element):添加元素到数组中指定位置的时候,需要将该位置及其后边所有的元素都整块向后复制一位
    • get(int index):获取指定位置上的元素时,可以通过索引直接获取(O(1))
    • remove(Object o)需要遍历数组
    • remove(int index)不需要遍历数组,只需判断index是否符合条件即可,效率比remove(Object o)高
    • contains(E)需要遍历数组
    • 使用iterator遍历可能会引发多线程异常
  • 相关阅读:
    lvm新增脚本
    k8s 开源web操作平台
    ES6 对象数组查找某一个对象
    Git常用命令使用大全
    Failed to read session data On PHP 7.2
    解决Apache无法解析PHP问题
    使用apache htpasswd生成加密的密码文件,并使用.htaccess控制目录访问
    Apache开启关闭错误提示
    linux查找目录下的所有文件中是否含有某个字符串
    抖音60秒视频权限开通方法
  • 原文地址:https://www.cnblogs.com/Tu9oh0st/p/10147120.html
Copyright © 2011-2022 走看看