题意:
n个地方,标号1~n,每个地方都有一头牛,现在要他们都去往标号为x的地方,再从x返回,每条道路都是单向的,求所有牛走的来回的最短路中的最大值。
分析:
注意在求每头牛走到x时,挨个算肯定超时,可以在将道路反向处理,都变成从x出。之前用vector模拟邻接表超时,后来用链表和数组分别模拟了邻接表,好像数组模拟的更快一些。
代码:
链表:
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
const int maxn =1005, maxm = 100005, INF = 0x3fffffff;
struct edge
{
int to, w;
edge* next;
};
int n, m, x;
int in[maxn], d[maxn], d1[maxn];
edge* head[maxn];
edge* head2[maxn];
queue<int>q;
void spfa()
{
fill(d, d+1+n,INF);
fill(in, in + 1 + n, 0);
d[x] = 0;
q.push(x);
in[x] = 1;
while(!q.empty()){
int a = q.front();
edge* t =head[a];q.pop();
in[a] = 0;
while(t!=NULL){
if(d[t->to]>d[a]+t->w){
d[t->to] = d[a] + t->w;
if(!in[t->to]){q.push(t->to);in[t->to] = 1;}
}
t = t->next;
}
}
return;
}
void spfa2()
{
fill(d1, d1+1+n,INF);
fill(in, in + 1 + n, 0);
d1[x] = 0;
q.push(x);
in[x] = 1;
while(!q.empty()){
int a = q.front();
edge* t=head2[a];q.pop();
in[a] = 0;
while(t!=NULL){
if(d1[t->to]>d1[a]+t->w){
d1[t->to] = d1[a] + t->w;
if(!in[t->to]){q.push(t->to);in[t->to] = 1;}
}
t = t->next;
}
}
return;
}
int main (void)
{
scanf("%d%d%d",&n,&m,&x);
int t1, t2, t3;
int res = 0;
memset(head, 0,sizeof(head));
for(int i = 0; i <m; i++){
scanf("%d%d%d", &t1, &t2, &t3);
edge* temp=new edge;
edge* temp2 = new edge;
temp->to = t2;
temp->w= t3;
temp->next = NULL;
if(head[t1]==NULL) head[t1] = temp;
else {
temp->next =head[t1];
head[t1] = temp;
}
temp2->to = t1;
temp2->w = t3;
temp2->next = NULL;
if(head2[t2]==NULL) head2[t2] = temp2;
else {
temp2->next = head2[t2];
head2[t2] = temp2;
}
}
spfa();
spfa2();
for(int i = 1; i <= n; i++){
if(i!=x&&res<d[i]+d1[i]) res = d[i]+d1[i];
}
printf("%d
",res);
}
数组:
#include<cstdio>
#include<iostream>
#include<queue>
using namespace std;
int n, m, x;
struct edge{
int to,w;
int next;
};
const int maxn =1005, maxm = 100005, INF = 0x3fffffff;
int head[maxn], head2[maxn];
edge e[maxm], re[maxm];
int in[maxn], d[maxn], d1[maxn];
void spfa()
{
fill(d, d+n+1,INF);
fill(in, in+n+1,0);
queue<int>q;
q.push(x);
in[x] = 1;
d[x] = 0;
while(!q.empty()){
int tmp = q.front();q.pop();
in[tmp] = 0;
int t = head[tmp];
while(t!=-1){
if(d[e[t].to] > d[tmp] + e[t].w){
d[e[t].to] = d[tmp] + e[t].w;
if(!in[e[t].to]){
q.push(e[t].to);
in[e[t].to] = 1;
}
}
t = e[t].next;
}
}
}
void spfa2()
{
fill(d1,d1+n+1,INF);
fill(in, in+n+1,0);
queue<int>q;
q.push(x);
in[x] = 1;
d1[x] = 0;
while(!q.empty()){
int tmp = q.front();q.pop();
in[tmp] = 0;
int t = head2[tmp];
while(t!=-1){
if(d1[re[t].to] > d1[tmp]+re[t].w){
d1[re[t].to] = d1[tmp] + re[t].w;
if(!in[re[t].to]){
q.push(re[t].to);
in[re[t].to] = 1;
}
}
t = re[t].next;
}
}
}
int main (void)
{
scanf("%d%d%d",&n,&m,&x);
int a, b ,c;
fill(head, head+n+1, -1);
fill(head2, head2+n+1, -1);
for(int i = 0; i < m; i++){
scanf("%d%d%d",&a,&b,&c);
e[i].to = b, e[i].w = c;
e[i].next = head[a];
head[a] = i;
re[i].to = a, re[i].w =c;
re[i].next = head2[b];
head2[b] = i;
}
spfa();
spfa2();
int res = 0;
for(int i = 1; i <= n ; i++){
if(i!=x&&res<d[i]+d1[i]) res = d[i]+d1[i];
}
printf("%d
",res);
}