zoukankan      html  css  js  c++  java
  • 【BZOJ】【3301】【USACO2011 Feb】Cow Line

    康托展开


      裸的康托展开&逆康托展开

      康托展开就是一种特殊的hash,且是可逆的……

      康托展开计算的是有多少种排列的字典序比这个小,所以编号应该+1;逆运算同理(-1)。

      序列->序号:(康托展开)

        对于每个数a[i],数比它小的数有多少个在它之前没出现,记为b[i],$ans=1+sum b[i]* (n-i)!$

      序号->序列:(逆康托展开)

        求第x个排列所对应的序列,先将x-1,然后对于a[i],$leftlfloor frac{x}{(n-i)!} ight floor $即为在它之后出现的比它小的数的个数,所以从小到大数一下有几个没出现的数,就知道a[i]是第几个数了。

    然而这题在比较答案的时候不忽略行末空格……大家小心一点……

     1 /**************************************************************
     2     Problem: 3301
     3     User: Tunix
     4     Language: C++
     5     Result: Accepted
     6     Time:84 ms
     7     Memory:1276 kb
     8 ****************************************************************/
     9  
    10 //BZOJ 3301
    11 #include<cstdio>
    12 #include<cstring>
    13 #include<cstdlib>
    14 #include<iostream>
    15 #include<algorithm>
    16 #define rep(i,n) for(int i=0;i<n;++i)
    17 #define F(i,j,n) for(int i=j;i<=n;++i)
    18 #define D(i,j,n) for(int i=j;i>=n;--i)
    19 #define pb push_back
    20 using namespace std;
    21 typedef long long LL;
    22 inline LL getint(){
    23     LL r=1,v=0; char ch=getchar();
    24     for(;!isdigit(ch);ch=getchar()) if (ch=='-') r=-1;
    25     for(; isdigit(ch);ch=getchar()) v=v*10-'0'+ch;
    26     return r*v;
    27 }
    28 const int N=25;
    29 /*******************template********************/
    30 int n,m;
    31 LL fac[N];
    32 int a[N];
    33 bool vis[N];
    34 void pailie(LL x){
    35     memset(vis,0,sizeof vis);
    36     F(i,1,n){
    37         int t=x/fac[n-i],j,k;
    38         for(k=1,j=0;j<=t;k++) if (!vis[k]) j++;
    39         vis[k-1]=1; a[i]=k-1;
    40         x%=fac[n-i];
    41     }
    42     F(i,1,n-1) printf("%d ",a[i]);
    43     printf("%d
    ",a[n]);
    44 }
    45 void hanghao(){
    46     LL ans=1;
    47     memset(vis,0,sizeof vis);
    48     F(i,1,n){
    49         int j=0,k;
    50         vis[a[i]]=1;
    51         F(k,1,a[i]) if (!vis[k]) j++;
    52         ans+=j*fac[n-i];
    53     }
    54     printf("%lld
    ",ans);
    55 }
    56 int main(){
    57 #ifndef ONLINE_JUDGE
    58     freopen("3301.in","r",stdin);
    59     freopen("3301.out","w",stdout);
    60 #endif
    61     n=getint(); m=getint();
    62     fac[0]=1;
    63     F(i,1,20) fac[i]=fac[i-1]*i;
    64 //  F(i,0,20) printf("%lld ",fac[i]); puts("");
    65     char cmd[5];
    66     while(m--){
    67         scanf("%s",cmd);
    68         if (cmd[0]=='P'){
    69             LL x=getint()-1;
    70             pailie(x);
    71         }else{
    72             F(i,1,n) a[i]=getint();
    73             hanghao();
    74         }
    75     }
    76     return 0;
    77 }
    78 
    View Code

    3301: [USACO2011 Feb] Cow Line

    Time Limit: 10 Sec  Memory Limit: 128 MB
    Submit: 84  Solved: 50
    [Submit][Status][Discuss]

    Description

    The N (1 <= N <= 20) cows conveniently numbered 1...N are playing
    yet another one of their crazy games with Farmer John. The cows
    will arrange themselves in a line and ask Farmer John what their
    line number is. In return, Farmer John can give them a line number
    and the cows must rearrange themselves into that line.
    A line number is assigned by numbering all the permutations of the
    line in lexicographic order.

    Consider this example:
    Farmer John has 5 cows and gives them the line number of 3.
    The permutations of the line in ascending lexicographic order:
    1st: 1 2 3 4 5
    2nd: 1 2 3 5 4
    3rd: 1 2 4 3 5
    Therefore, the cows will line themselves in the cow line 1 2 4 3 5.

    The cows, in return, line themselves in the configuration "1 2 5 3 4" and
    ask Farmer John what their line number is.

    Continuing with the list:
    4th : 1 2 4 5 3
    5th : 1 2 5 3 4
    Farmer John can see the answer here is 5

    Farmer John and the cows would like your help to play their game.
    They have K (1 <= K <= 10,000) queries that they need help with.
    Query i has two parts: C_i will be the command, which is either 'P'
    or 'Q'.

    If C_i is 'P', then the second part of the query will be one integer
    A_i (1 <= A_i <= N!), which is a line number. This is Farmer John
    challenging the cows to line up in the correct cow line.

    If C_i is 'Q', then the second part of the query will be N distinct
    integers B_ij (1 <= B_ij <= N). This will denote a cow line. These are the
    cows challenging Farmer John to find their line number.

    有N头牛,分别用1……N表示,排成一行。
    将N头牛,所有可能的排列方式,按字典顺序从小到大排列起来。
    例如:有5头牛
    1st: 1 2 3 4 5
    2nd: 1 2 3 5 4
    3rd: 1 2 4 3 5
    4th : 1 2 4 5 3
    5th : 1 2 5 3 4
    ……
    现在,已知N头牛的排列方式,求这种排列方式的行号。
    或者已知行号,求牛的排列方式。
    所谓行号,是指在N头牛所有可能排列方式,按字典顺序从大到小排列后,某一特定排列方式所在行的编号。
    如果,行号是3,则排列方式为1 2 4 3 5
    如果,排列方式是 1 2 5 3 4 则行号为5

    有K次问答,第i次问答的类型,由C_i来指明,C_i要么是‘P’要么是‘Q’。
    当C_i为P时,将提供行号,让你答牛的排列方式。当C_i为Q时,将告诉你牛的排列方式,让你答行号。

    Input

    * Line 1: Two space-separated integers: N and K
    * Lines 2..2*K+1: Line 2*i and 2*i+1 will contain a single query.
    Line 2*i will contain just one character: 'Q' if the cows are lining
    up and asking Farmer John for their line number or 'P' if Farmer
    John gives the cows a line number.

    If the line 2*i is 'Q', then line 2*i+1 will contain N space-separated
    integers B_ij which represent the cow line. If the line 2*i is 'P',
    then line 2*i+1 will contain a single integer A_i which is the line
    number to solve for.

    第1行:N和K
    第2至2*K+1行:Line2*i ,一个字符‘P’或‘Q’,指明类型。
    如果Line2*i是P,则Line2*i+1,是一个整数,表示行号;
    如果Line2*i+1 是Q ,则Line2+i,是N个空格隔开的整数,表示牛的排列方式。

    Output

    * Lines 1..K: Line i will contain the answer to query i.

    If line 2*i of the input was 'Q', then this line will contain a
    single integer, which is the line number of the cow line in line
    2*i+1.

    If line 2*i of the input was 'P', then this line will contain N
    space separated integers giving the cow line of the number in line
    2*i+1.
    第1至K行:如果输入Line2*i 是P,则输出牛的排列方式;如果输入Line2*i是Q,则输出行号

    Sample Input

    5 2
    P
    3
    Q
    1 2 5 3 4

    Sample Output


    1 2 4 3 5
    5

    HINT

    Source

    [Submit][Status][Discuss]
  • 相关阅读:
    How to access the properties of an object in Javascript
    他们不是机器人
    sql 使用整理
    地图上计算两点间的距离.(参考网络)
    window.location.reload被弃用?
    BitBlt
    BitBlt介绍
    C#大数计算 .Net Framework4.0以下
    C# ToString格式化
    Ubuntu修改时区和更新时间
  • 原文地址:https://www.cnblogs.com/Tunix/p/4511044.html
Copyright © 2011-2022 走看看