zoukankan      html  css  js  c++  java
  • tensorflow学习笔记(1)

    1.简单线性回归

    #线性回归
    import numpy as np
    data_x=np.linspace(0,10,30)
    data_y=data_x*3+7+np.random.normal(0,1,30)
    
    import matplotlib.pyplot as plt
    %matplotlib inline
    
    plt.scatter(data_x,data_y)
    
    w=tf.Variable(1.,name='weights')
    b=tf.Variable(0.,name='bias')
    
    x=tf.placeholder(tf.float32,shape=None)
    y=tf.placeholder(tf.float32,shape=[None])
    
    pred=tf.multiply(x,w)+b
    
    loss=tf.reduce_sum(tf.squared_difference(pred,y))
    
    learning_rate=0.0001
    
    train_step=tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)#梯度下降训练
    
    sess=tf.Session()
    sess.run(tf.global_variables_initializer())
    
    for i in range(5000):
        sess.run(train_step,feed_dict={x:data_x,y:data_y})
        if i%100==0:
            print(sess.run([loss,w,b],feed_dict={x:data_x,y:data_y}))
    

     2.多分类问题

    #多分类问题
    import tensorflow as tf
    
    
    tf.__version__
    
    import numpy as np
    import requests
    
    r=requests.get('http://archive.ics.uci.edu/ml/machine-learning-database/iris/iris.data')#从网站获取数据
    
    with open('iris.data','w') as f:
        f.write(r.text)#将文件写入本地
    
    import pandas as pd
    #data=pd.read_csv('iris.data',names=['e_cd','e_kd','b_cd','b_kd','cat'])#读取文件,设置列名
    data=pd.read_csv('iris.csv',header=0, index_col=0 )#header=0时,第一行为列索引,index_col=0时,第一列为行索引
    
    data
    
    #画出所有数字类型特征之间的关系
    import seaborn as sns
    %matplotlib inline
    sns.pairplot(data)
    
    data.Species.unique()#查看有几种分类》array(['setosa', 'versicolor', 'virginica'], dtype=object)
    
    #将分类变成独热编码
    data['c1']=np.array(data['Species']=='setosa').astype(np.float32)
    data['c2']=np.array(data['Species']=='versicolor').astype(np.float32)
    data['c3']=np.array(data['Species']=='virginica').astype(np.float32)
    target=np.stack([data.c1.values,data.c2.values,data.c3.values]).T
    
    shuju=np.stack([data['Sepal.Length'],data['Sepal.Width'],data['Petal.Length'],data['Petal.Width']]).T
    
    shuju.shape,target.shape
    
    #定义网络
    x=tf.placeholder('float',shape=[None,4])
    y=tf.placeholder('float',shape=[None,3])
    weight=tf.Variable(tf.truncated_normal([4,3]))
    bias=tf.Variable(tf.truncated_normal([3]))
    combine_input=tf.matmul(x,weight)+bias
    
    pred=tf.nn.softmax(combine_input)
    
    loss=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=combine_input))
    
    correct_pred=tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
    accuracy=tf.reduce_mean(tf.cast(correct_pred,tf.float32))
    
    train_step=tf.train.AdamOptimizer(0.005).minimize(loss)
    
    sess=tf.Session()
    sess.run(tf.global_variables_initializer())
    
    for i in range(1000):
        index=np.random.permutation(len(target))#每次训练打乱数据
        shuju=shuju[index]
        target=target[index]
        sess.run(train_step,feed_dict={x:shuju,y:target})
        if i%100==0:
            print(sess.run((loss,accuracy),feed_dict={x:shuju,y:target}))
    

      

  • 相关阅读:
    HBase性能调优
    HBase原理和设计
    HBase 架构脑图
    Hadoop
    Hadoop YARN架构设计要点
    Hadoop-YARN
    Hadoop-HDFS
    TCP传输
    分布式系统常见的事务处理机制
    Zookeeper Client简介
  • 原文地址:https://www.cnblogs.com/Turing-dz/p/13195406.html
Copyright © 2011-2022 走看看