zoukankan      html  css  js  c++  java
  • 神经网络(NN)实现多分类-----Keras实现

    IRIS数据集介绍

      IRIS数据集(鸢尾花数据集),是一个经典的机器学习数据集,适合作为多分类问题的测试数据,它的下载地址为:http://archive.ics.uci.edu/ml/machine-learning-databases/iris/
      IRIS数据集是用来给鸢尾花做分类的数据集,一共150个样本,每个样本包含了花萼长度(sepal length in cm)、花萼宽度(sepal width in cm)、花瓣长度(petal length in cm)、花瓣宽度(petal width in cm)四个特征,将鸢尾花分为三类,分别为Iris Setosa,Iris Versicolour,Iris Virginica,每一类都有50个样本。
      IRIS数据集具体如下(只展示部分数据,顺序已打乱):

    读取数据集

    import pandas as pd
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import LabelBinarizer
    
    # 读取CSV数据集,并拆分为训练集和测试集
    # 该函数的传入参数为CSV_FILE_PATH: csv文件路径
    def load_data(CSV_FILE_PATH):
        IRIS = pd.read_csv(CSV_FILE_PATH)
        target_var = 'class'  # 目标变量
        # 数据集的特征
        features = list(IRIS.columns)
        features.remove(target_var)
        # 目标变量的类别
        Class = IRIS[target_var].unique()
        # 目标变量的类别字典
        Class_dict = dict(zip(Class, range(len(Class))))
        # 增加一列target, 将目标变量进行编码
        IRIS['target'] = IRIS[target_var].apply(lambda x: Class_dict[x])
        # 对目标变量进行0-1编码(One-hot Encoding)
        lb = LabelBinarizer()
        lb.fit(list(Class_dict.values()))
        transformed_labels = lb.transform(IRIS['target'])
        y_bin_labels = []  # 对多分类进行0-1编码的变量
        for i in range(transformed_labels.shape[1]):
            y_bin_labels.append('y' + str(i))
            IRIS['y' + str(i)] = transformed_labels[:, i]
        # 将数据集分为训练集和测试集
        train_x, test_x, train_y, test_y = train_test_split(IRIS[features], IRIS[y_bin_labels], 
                                                            train_size=0.7, test_size=0.3, random_state=0)
        return train_x, test_x, train_y, test_y, Class_dict

    搭建DNN

      接下来,笔者将展示如何利用Keras来搭建一个简单的深度神经网络(DNN)来解决这个多分类问题。我们要搭建的DNN的结构如下图所示:

     
    DNN模型的结构示意图

    我们搭建的DNN由输入层、隐藏层、输出层和softmax函数组成,其中输入层由4个神经元组成,对应IRIS数据集中的4个特征,作为输入向量,隐藏层有两层,每层分别有5和6个神经元,之后就是输出层,由3个神经元组成,对应IRIS数据集的目标变量的类别个数,最后,就是一个softmax函数,用于解决多分类问题而创建。
      对应以上的DNN结构,用Keras来搭建的话,其Python代码如下:


     import keras as K
        # 2. 定义模型
        init = K.initializers.glorot_uniform(seed=1)
        simple_adam = K.optimizers.Adam()
        model = K.models.Sequential()
        model.add(K.layers.Dense(units=5, input_dim=4, kernel_initializer=init, activation='relu'))
        model.add(K.layers.Dense(units=6, kernel_initializer=init, activation='relu'))
        model.add(K.layers.Dense(units=3, kernel_initializer=init, activation='softmax'))
        model.compile(loss='categorical_crossentropy', optimizer=simple_adam, metrics=['accuracy'])

    在这个模型中,我们选择的神经元激活函数为ReLU函数,损失函数为交叉熵(cross entropy),迭代的优化器(optimizer)选择Adam,最初各个层的连接权重(weights)和偏重(biases)是随机生成的。这样我们就讲这个DNN的模型定义完毕了。

    训练及预测

      OK,定义完模型后,我们需要对模型进行训练、评估及预测。对于模型训练,我们每次训练的批数为1,共迭代100次,代码如下(接以上代码):

       # 3. 训练模型
        b_size = 1
        max_epochs = 100
        print("Starting training ")
        h = model.fit(train_x, train_y, batch_size=b_size, epochs=max_epochs, shuffle=True, verbose=1)
        print("Training finished 
    ")

    为了对模型有个评估,感知模型的表现,需要输出该DNN模型的损失函数的值以及在测试集上的准确率,其Python代码如下(接以上代码):

      # 4. 评估模型
        eval = model.evaluate(test_x, test_y, verbose=0)
        print("Evaluation on test data: loss = %0.6f accuracy = %0.2f%% 
    " 
              % (eval[0], eval[1] * 100) )

    训练100次,输出的结果如下(中间部分的训练展示已忽略):

    Starting training 
    Epoch 1/100
    
      1/105 [..............................] - ETA: 17s - loss: 0.3679 - acc: 1.0000
     42/105 [===========>..................] - ETA: 0s - loss: 1.8081 - acc: 0.3095 
     89/105 [========================>.....] - ETA: 0s - loss: 1.5068 - acc: 0.4270
    105/105 [==============================] - 0s 3ms/step - loss: 1.4164 - acc: 0.4667
    Epoch 2/100
    
      1/105 [..............................] - ETA: 0s - loss: 0.4766 - acc: 1.0000
     45/105 [===========>..................] - ETA: 0s - loss: 1.0813 - acc: 0.4889
     93/105 [=========================>....] - ETA: 0s - loss: 1.0335 - acc: 0.4839
    105/105 [==============================] - 0s 1ms/step - loss: 1.0144 - acc: 0.4857
    
    ......
    
    Epoch 99/100
    
      1/105 [..............................] - ETA: 0s - loss: 0.0013 - acc: 1.0000
     43/105 [===========>..................] - ETA: 0s - loss: 0.0447 - acc: 0.9767
     84/105 [=======================>......] - ETA: 0s - loss: 0.0824 - acc: 0.9524
    105/105 [==============================] - 0s 1ms/step - loss: 0.0711 - acc: 0.9619
    Epoch 100/100
    
      1/105 [..............................] - ETA: 0s - loss: 2.3032 - acc: 0.0000e+00
     51/105 [=============>................] - ETA: 0s - loss: 0.1122 - acc: 0.9608    
     99/105 [===========================>..] - ETA: 0s - loss: 0.0755 - acc: 0.9798
    105/105 [==============================] - 0s 1ms/step - loss: 0.0756 - acc: 0.9810
    Training finished 
    
    Evaluation on test data: loss = 0.094882 accuracy = 97.78% 

    可以看到,训练完100次后,在测试集上的准确率已达到97.78%,效果相当好。
      最后是对新数据集进行预测,我们假设一朵鸢尾花的4个特征为6.1,3.1,5.1,1.1,我们想知道这个DNN模型会把它预测到哪一类,其Python代码如下:

        import numpy as np
        # 5. 使用模型进行预测
        np.set_printoptions(precision=4)
        unknown = np.array([[6.1, 3.1, 5.1, 1.1]], dtype=np.float32)
        predicted = model.predict(unknown)
        print("Using model to predict species for features: ")
        print(unknown)
        print("
    Predicted softmax vector is: ")
        print(predicted)
        species_dict = {v:k for k,v in Class_dict.items()}
        print("
    Predicted species is: ")
        print(species_dict[np.argmax(predicted)])

    输出的结果如下:

    Using model to predict species for features: 
    [[ 6.1  3.1  5.1  1.1]]
    
    Predicted softmax vector is: 
    [[  2.0687e-07   9.7901e-01   2.0993e-02]]
    
    Predicted species is: 
    versicolor

    如果我们仔细地比对IRIS数据集,就会发现,这个预测结果令人相当满意,这个鸢尾花样本的预测结果,以人类的眼光来看,也应当是versicolor。

    最后,附上该DNN模型的完整Python代码:
    # iris_keras_dnn.py
    # Python 3.5.1, TensorFlow 1.6.0, Keras 2.1.5
    # ========================================================
    # 导入模块
    import os
    import numpy as np
    import keras as K
    import tensorflow as tf
    import pandas as pd
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import LabelBinarizer
    os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
    
    # 读取CSV数据集,并拆分为训练集和测试集
    # 该函数的传入参数为CSV_FILE_PATH: csv文件路径
    def load_data(CSV_FILE_PATH):
        IRIS = pd.read_csv(CSV_FILE_PATH)
        target_var = 'class'  # 目标变量
        # 数据集的特征
        features = list(IRIS.columns)
        features.remove(target_var)
        # 目标变量的类别
        Class = IRIS[target_var].unique()
        # 目标变量的类别字典
        Class_dict = dict(zip(Class, range(len(Class))))
        # 增加一列target, 将目标变量进行编码
        IRIS['target'] = IRIS[target_var].apply(lambda x: Class_dict[x])
        # 对目标变量进行0-1编码(One-hot Encoding)
        lb = LabelBinarizer()
        lb.fit(list(Class_dict.values()))
        transformed_labels = lb.transform(IRIS['target'])
        y_bin_labels = []  # 对多分类进行0-1编码的变量
        for i in range(transformed_labels.shape[1]):
            y_bin_labels.append('y' + str(i))
            IRIS['y' + str(i)] = transformed_labels[:, i]
        # 将数据集分为训练集和测试集
        train_x, test_x, train_y, test_y = train_test_split(IRIS[features], IRIS[y_bin_labels], 
                                                            train_size=0.7, test_size=0.3, random_state=0)
        return train_x, test_x, train_y, test_y, Class_dict
    
    def main():
    
        # 0. 开始
        print("
    Iris dataset using Keras/TensorFlow ")
        np.random.seed(4)
        tf.set_random_seed(13)
    
        # 1. 读取CSV数据集
        print("Loading Iris data into memory")
        CSV_FILE_PATH = 'E://iris.csv'
        train_x, test_x, train_y, test_y, Class_dict = load_data(CSV_FILE_PATH)
    
        # 2. 定义模型
        init = K.initializers.glorot_uniform(seed=1)
        simple_adam = K.optimizers.Adam()
        model = K.models.Sequential()
        model.add(K.layers.Dense(units=5, input_dim=4, kernel_initializer=init, activation='relu'))
        model.add(K.layers.Dense(units=6, kernel_initializer=init, activation='relu'))
        model.add(K.layers.Dense(units=3, kernel_initializer=init, activation='softmax'))
        model.compile(loss='categorical_crossentropy', optimizer=simple_adam, metrics=['accuracy'])
    
        # 3. 训练模型
        b_size = 1
        max_epochs = 100
        print("Starting training ")
        h = model.fit(train_x, train_y, batch_size=b_size, epochs=max_epochs, shuffle=True, verbose=1)
        print("Training finished 
    ")
    
        # 4. 评估模型
        eval = model.evaluate(test_x, test_y, verbose=0)
        print("Evaluation on test data: loss = %0.6f accuracy = %0.2f%% 
    " 
              % (eval[0], eval[1] * 100) )
    
        # 5. 使用模型进行预测
        np.set_printoptions(precision=4)
        unknown = np.array([[6.1, 3.1, 5.1, 1.1]], dtype=np.float32)
        predicted = model.predict(unknown)
        print("Using model to predict species for features: ")
        print(unknown)
        print("
    Predicted softmax vector is: ")
        print(predicted)
        species_dict = {v:k for k,v in Class_dict.items()}
        print("
    Predicted species is: ")
        print(species_dict[np.argmax(predicted)])
    
    main()
    链接:https://www.jianshu.com/p/1d88a6ed707e
    来源:简书

  • 相关阅读:
    整理一些笔试题(要求手写代码的)
    网络笔试题
    链表-单链表的各种操作
    C语言-排序-希尔排序
    C语言-排序-选择排序
    C语言-排序-归并排序
    C语言-排序-插入排序
    [转载]iOS 10 UserNotifications 框架解析
    Objective-C枚举的几种定义方式与使用
    【转载】iOS屏幕适配设计
  • 原文地址:https://www.cnblogs.com/USTC-ZCC/p/10946216.html
Copyright © 2011-2022 走看看