zoukankan      html  css  js  c++  java
  • poj 1466 Girls and Boys(二分匹配之最大独立集)

    Description
    In the second year of the university somebody started a study on the romantic relations between the students. The relation "romantically involved" is defined between one girl and one boy. For the study reasons it is necessary to find out the maximum set satisfying the condition: there are no two students in the set who have been "romantically involved". The result of the program is the number of students in such a set.

    Input

    The input contains several data sets in text format. Each data set represents one set of subjects of the study, with the following description: 
    
    the number of students 
    the description of each student, in the following format 
    student_identifier:(number_of_romantic_relations) student_identifier1 student_identifier2 student_identifier3 ... 
    or 
    student_identifier:(0) 
    
    The student_identifier is an integer number between 0 and n-1 (n <=500 ), for n subjects.

    Output

    For each given data set, the program should write to standard output a line containing the result.

    Sample Input

    7
    0: (3) 4 5 6
    1: (2) 4 6
    2: (0)
    3: (0)
    4: (2) 0 1
    5: (1) 0
    6: (2) 0 1
    3
    0: (2) 1 2
    1: (1) 0
    2: (1) 0

    Sample Output

    5
    2

    Source

     

    题目大意:有n个学生,每个学生都和一些人又关系,现在要你找出最大的人数,使得这些人之间没关系

    解题思路:裸的最大独立集,最大独立集=点数-最大匹配数
    这里注意因为是两两匹配,所以求出的匹配值要除上个2

    优化了几下,时间不断减少

     
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    using namespace std;
    #define N 506
    int n;
    int match[N];
    int vis[N];
    int mp[N][N];
    bool dfs(int x){
        for(int i=0;i<n;i++){
            if(!vis[i] && mp[x][i]){
                vis[i]=1;
                if(match[i]==-1 || dfs(match[i])){
                    match[i]=x;
                    return true;
                }
            }
        }
        return false;
    }
    void solve(){
        int ans=0;
        memset(match,-1,sizeof(match));
    
        for(int i=0;i<n;i++){
            memset(vis,0,sizeof(vis));
            if(dfs(i)){
                ans++;
            }
        }
        printf("%d
    ",n-ans/2);
    }
    int main()
    {
    
        while(scanf("%d",&n)==1){
            memset(mp,0,sizeof(mp));
            char s[6];
            for(int i=0;i<n;i++){
                scanf("%s",s);
                scanf("%s",s);
                int num=0;
                for(int j=0;j<strlen(s);j++){
                    if(s[j]>='0' && s[j]<='9'){
                        num=num*10+s[j]-'0';
                    }
                }
                //printf("---%d
    ",num);
                int x;
                for(int j=0;j<num;j++){
                    scanf("%d",&x);
                    mp[i][x]=mp[x][i]=1;
                }
            }
            solve();
        }
        return 0;
    }
  • 相关阅读:
    GAN阶段性小结(损失函数、收敛性分析、训练技巧、应用“高分辨率、domain2domain”、研究方向)
    MMD :maximum mean discrepancy
    Chinese-BERT-wwm
    VGG16学习笔记
    jupyter notebook使用技巧--命令行模式以及在Markdown模式使用的操作(4)
    不同领域公开数据集下载
    数据挖掘竞赛,算法刷题网址汇总
    在keras下实现多个模型的融合
    问题集合
    开源测试数据集合
  • 原文地址:https://www.cnblogs.com/UniqueColor/p/4773723.html
Copyright © 2011-2022 走看看