zoukankan      html  css  js  c++  java
  • hdu 5626 Clarke and points

    Problem Description
    Clarke is a patient with multiple personality disorder. One day he turned into a learner of geometric.  He did a research on a interesting distance called Manhattan Distance. The Manhattan Distance between point A(xA,yA) and point B(xB,yB) is |xAxB|+|yAyB|.  Now he wants to find the maximum distance between two points of n points.
     
    Input
    The first line contains a integer T(1T5), the number of test case.  For each test case, a line followed, contains two integers n,seed(2n1000000,1seed109), denotes the number of points and a random seed.  The coordinate of each point is generated by the followed code. 
    ``` long long seed; inline long long rand(long long l, long long r) {   static long long mo=1e9+7, g=78125;   return l+((seed*=g)%=mo)%(r-l+1); }
    // ...
    cin >> n >> seed; for (int i = 0; i < n; i++)   x[i] = rand(-1000000000, 1000000000),   y[i] = rand(-1000000000, 1000000000); ```
     
    Output
    For each test case, print a line with an integer represented the maximum distance.
     
    Sample Input
    2 3 233 5 332
     
    Sample Output
    1557439953 1423870062
     
    Source
     


    先附上自己的写法,运气好的话可以过,运气不好的话超时,这东西也看人品?

     1 #pragma comment(linker, "/STACK:1024000000,1024000000")
     2 #include<iostream>
     3 #include<cstdio>
     4 #include<cstring>
     5 #include<cmath>
     6 #include<math.h>
     7 #include<algorithm>
     8 #include<queue>
     9 #include<set>
    10 #include<bitset>
    11 #include<map>
    12 #include<vector>
    13 #include<stdlib.h>
    14 using namespace std;
    15 #define ll long long
    16 #define eps 1e-10
    17 #define MOD 1000000007
    18 #define N 1000006
    19 #define inf 1e12
    20 
    21 struct node{  
    22     ll x,y;  
    23 }e[N],res[N];  
    24 ll cmp(node a,node b)  
    25 {  
    26     if(a.x==b.x)return a.y<b.y;  
    27     return a.x<b.x;  
    28 }  
    29 ll cross(node a,node b,node c)//向量积  
    30 {  
    31     return (a.x-c.x)*(b.y-c.y)-(b.x-c.x)*(a.y-c.y);  
    32 }  
    33 ll convex(ll n)//求凸包上的点  
    34 {  
    35     sort(e,e+n,cmp);  
    36     ll m=0,i,j,k;  
    37     //求得下凸包,逆时针  
    38     //已知凸包点m个,如果新加入点为i,则向量(m-2,i)必定要在(m-2,m-1)的逆时针方向才符合凸包的性质  
    39     //若不成立,则m-1点不在凸包上。  
    40     for(i=0;i<n;i++)  
    41     {  
    42         while(m>1&&cross(res[m-1],e[i],res[m-2])<=0)m--;  
    43         res[m++]=e[i];  
    44     }  
    45     k=m;  
    46     //求得上凸包  
    47     for(i=n-2;i>=0;i--)  
    48     {  
    49         while(m>k&&cross(res[m-1],e[i],res[m-2])<=0)m--;  
    50         res[m++]=e[i];  
    51     }  
    52     if(n>1)m--;//起始点重复。  
    53     return m;  
    54 }  
    55 
    56 long long n,seed;
    57 inline long long rand(long long l, long long r) {
    58     static long long mo=1e9+7, g=78125;
    59     return l+((seed*=g)%=mo)%(r-l+1);
    60 }
    61 
    62 int main()
    63 {
    64     int t;
    65     scanf("%d",&t);
    66     while(t--){
    67         cin >> n >> seed;
    68         for (int i = 0; i < n; i++){
    69             e[i].x = rand(-1000000000, 1000000000),
    70             e[i].y = rand(-1000000000, 1000000000);
    71         }
    72         ll    m=convex(n);
    73         ll ans=-1;
    74         for(ll i=0;i<m;i++){
    75             for(ll j=i+1;j<m;j++){
    76                 ll cnt = abs(res[i].x-res[j].x)+abs(res[i].y-res[j].y);
    77                 ans=max(ans,cnt);
    78             }
    79         }
    80         printf("%I64d
    ",ans);
    81         
    82     }        
    83     return 0;
    84 }
    View Code


    官方题解:

     1 #include<bitset>
     2 #include<map>
     3 #include<vector>
     4 #include<cstdio>
     5 #include<iostream>
     6 #include<cstring>
     7 #include<string>
     8 #include<algorithm>
     9 #include<cmath>
    10 #include<stack>
    11 #include<queue>
    12 #include<set>
    13 #define inf 0x3f3f3f3f
    14 #define mem(a,x) memset(a,x,sizeof(a))
    15 
    16 using namespace std;
    17 
    18 typedef long long ll;
    19 typedef unsigned long long ull;
    20 typedef pair<int,int> pii;
    21 
    22 inline int in()
    23 {
    24     int res=0;char c;int f=1;
    25     while((c=getchar())<'0' || c>'9')if(c=='-')f=-1;
    26     while(c>='0' && c<='9')res=res*10+c-'0',c=getchar();
    27     return res*f;
    28 }
    29 const int  N = 1000003;
    30 
    31 ll a[N][3];
    32 int n;
    33 long long seed;
    34 inline long long rand(long long l, long long r) {
    35     static long long mo=1e9+7, g=78125;
    36     return l+((seed*=g)%=mo)%(r-l+1);
    37 }
    38 int main() {
    39     int T;
    40     for (scanf("%d", &T);T--;) {
    41         cin >> n >> seed;
    42         for (int i=0; i<n; i++)
    43             a[i][0]=rand(-1000000000, 1000000000),
    44             a[i][1]=rand(-1000000000, 1000000000);
    45         ll t=0;
    46         ll ans=0,mx=-9223372036854775808LL,mn=9223372036854775807LL;
    47         for (int s=0; s<(1<<2); s++) {
    48             mx=-9223372036854775808LL,mn=9223372036854775807LL;
    49             for (int i=0; i<n; i++) {
    50                 t = 0;
    51                 for (int j=0; j<2; j++)
    52                     if ((1<<j) & s) t += a[i][j];
    53                     else t -= a[i][j];
    54                 mn = min(mn, t);
    55                 mx = max(mx, t);
    56             }
    57             ans = max(ans, mx-mn);
    58         }
    59         printf("%I64d
    ", ans);
    60     }
    61     return 0;
    62 }
    View Code
  • 相关阅读:
    标准函数头部注释
    排序
    #define _INTSIZEOF(n)
    并发编程资料
    memory model
    Ubuntu搜狗输入法的使用
    gprof
    xml_editor
    创建本地Ubuntu镜像
    设计模式9:建造者模式
  • 原文地址:https://www.cnblogs.com/UniqueColor/p/5188351.html
Copyright © 2011-2022 走看看