zoukankan      html  css  js  c++  java
  • 并发编程-ConcurrentHashMap(二)

    并发编程-ConcurrentHashMap(二)

    昨天说到扩容前面的准备工作,和一系列的判断,其中我觉得设计精妙的就是他的那个【高低位扩容】,精巧的使用了二进制,从某种层面讲,提升了性能,因为二进制的那个变量的存储,就相同于一个容器,如果不使用它,那肯定要new出一个容器进行存储,这就会占用内存。今天继续分析,所有关于CHM的东西,今天咱们就会剖析完,let's start with the method named transfer.

    transfer()

    这里主要是对数据进行转移

    • 需要计算当前线程的数据迁移空间
    • 创建一个新的数组,容量为扩容后的大小
    • 实现数据的转移
      •   如果是红黑树
        •   如果数据迁移后,不满足红黑树的条件,则红黑树转化成链表 
      •   如果是链表
        •   相应的阈值转换成红黑树
    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
        int n = tab.length, stride;
        // 这里是计算每个线程处理数据的区间大小,最小是16
        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
            stride = MIN_TRANSFER_STRIDE; 
        //扩容之后的数组(在原来的数组的容量的基础上扩大了一倍)
        if (nextTab == null) {            // initiating
            try {
                @SuppressWarnings("unchecked")
                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
                nextTab = nt;
            } catch (Throwable ex) {      // try to cope with OOME
                sizeCtl = Integer.MAX_VALUE;
                return;
            }
            nextTable = nextTab;
            //这是转移的索引,每个线程所处理的区间数量
            transferIndex = n;
        }
        int nextn = nextTab.length;
        //这个表示已经迁移完成的状态(如果老数组中的的节点完成了迁移,则需要修改成fwd)
        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
        boolean advance = true;
        boolean finishing = false; 
        for (int i = 0, bound = 0;;) {
            Node<K,V> f; int fh;
            while (advance) {
                int nextIndex, nextBound;
                if (--i >= bound || finishing)
                    advance = false;
                else if ((nextIndex = transferIndex) <= 0) {
                    i = -1;
                    advance = false;
                }
                //通过循环对区间进行计算 假设数组长度是32 
                //那第一次计算的区间就是【16(nextBound),31(i)】 第二次计算就是【0,15】
                else if (U.compareAndSwapInt
                         (this, TRANSFERINDEX, nextIndex,
                          (nextBound) = (nextIndex > stride ?
                                       nextIndex - stride : 0))) {
                    bound = nextBound;
                    i = nextIndex - 1;
                    advance = false;
                }
            }
            //判断是否扩容结束
            if (i < 0 || i >= n || i + n >= nextn) {
                int sc;
                if (finishing) {
                    nextTable = null;
                    table = nextTab;
                    sizeCtl = (n << 1) - (n >>> 1);
                    return;
                }
                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                    //因为前面在提到高低位扩容的时候是默认给低位加2的,所以现在减2如果等于初始数据则证明扩容结束
                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                        return;
                    finishing = advance = true;
                    i = n; 
                }
            }
            //得到数组最高位的值,如果当前数组位置为空,则直接修改成fwd表示数组迁移完成
            else if ((f = tabAt(tab, i)) == null)
                advance = casTabAt(tab, i, null, fwd);
            //判断这个节点是否已经被处理过了,如果是,则进入下一次区间遍历
            else if ((fh = f.hash) == MOVED)
                advance = true; // already processed
            else {
                //针对当前要去迁移的节点加锁(数组最大位的节点的位置),其他线程调用时候,需要等待
                synchronized (f) {
                    //下面就是针对不同类型的节点【链表/红黑树】,做不同的处理了,那这里我们会遇见一个问题,就是我们的内容存货从的下标是通过key和老数组的长度计算出来的,那新的数组可能会对应不同的hash数值,所以下面有一个变量【runBit】判断是否我们迁移某些数据或者不迁移 
                    if (tabAt(tab, i) == f) {
                        Node<K,V> ln, hn;
                        if (fh >= 0) {
                            int runBit = fh & n;
                            Node<K,V> lastRun = f;
                            //遍历当前列表,进行计算(组成两个链路)-找到最早的runBit不产生变化的那个数据(这样就证明在后续的数据中我都不需要进行迁移),那就把这个数据后面的组成一条链路(ln),这个链路上的剩余数据就是需要进行迁移的(因为他们的hash和新数组的不同)所以剩下的数据就组成一条链路(hn)
                            for (Node<K,V> p = f.next; p != null; p = p.next) {
                                int b = p.hash & n;
                                if (b != runBit) {
                                    runBit = b;
                                    lastRun = p;
                                }
                            }
                            //表示当前位置不用变化
                            if (runBit == 0) {
                                ln = lastRun;
                                hn = null;
                            }
                            else {
                                hn = lastRun;
                                ln = null;
                            }
                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
                                int ph = p.hash; K pk = p.key; V pv = p.val;
                                if ((ph & n) == 0)
                                    ln = new Node<K,V>(ph, pk, pv, ln);
                                else
                                    hn = new Node<K,V>(ph, pk, pv, hn);
                            }
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                        else if (f instanceof TreeBin) {
                            TreeBin<K,V> t = (TreeBin<K,V>)f;
                            TreeNode<K,V> lo = null, loTail = null;
                            TreeNode<K,V> hi = null, hiTail = null;
                            int lc = 0, hc = 0;
                            for (Node<K,V> e = t.first; e != null; e = e.next) {
                                int h = e.hash;
                                TreeNode<K,V> p = new TreeNode<K,V>
                                    (h, e.key, e.val, null, null);
                                if ((h & n) == 0) {
                                    if ((p.prev = loTail) == null)
                                        lo = p;
                                    else
                                        loTail.next = p;
                                    loTail = p;
                                    ++lc;
                                }
                                else {
                                    if ((p.prev = hiTail) == null)
                                        hi = p;
                                    else
                                        hiTail.next = p;
                                    hiTail = p;
                                    ++hc;
                                }
                            }
                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                    }
                }
            }
        }
    }

    如果进行元素个数的计算

    因为它是一个并发的集合框架,那多线程情况下,他是如何保证计算元素个数的准确性呢,这里面他使用了两种方法结合的方式,一个是basecount计算总数的变量 另外一种就是名为CounterCell的数组。

    整体流程如下:

    • 每次增加数据的时候对basecount进行增加,如果失败(那就证明有多个线程正在对这个资源共同抢占)
    • 那就随机给CounterCell数组中存储一个数据,这就削减了basecount的压力
    • 最后对basecount和CounterCell的数据进行一个累加,从而达到计算总数的效果,这里都是使用cas保障安全性的
    private final void addCount(long x, int check) {
        CounterCell[] as; long b, s;
        //统计元素个数 如果使用BASECOUNT没有修改成功
        if ((as = counterCells) != null ||
            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
            CounterCell a; long v; int m;
            boolean uncontended = true;
            if (as == null || (m = as.length - 1) < 0 ||
                //这里就是随便找一个或者counterCells中的元素进行累加
                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
                !(uncontended =
                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
                //这里完成元素的累加
                fullAddCount(x, uncontended);
                return;
            }
            if (check <= 1)
                return;
            s = sumCount();
        }
        //是否要进行扩容
        if (check >= 0) {
            Node<K,V>[] tab, nt; int n, sc;
            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
                   (n = tab.length) < MAXIMUM_CAPACITY) {
                int rs = resizeStamp(n);
                if (sc < 0) {
                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                        transferIndex <= 0)
                        break;
                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                        transfer(tab, nt);
                }
                else if (U.compareAndSwapInt(this, SIZECTL, sc,
                                             (rs << RESIZE_STAMP_SHIFT) + 2))
                    transfer(tab, null);
                s = sumCount();
            }
        }
    }

    对元素进行累加

    // See LongAdder version for explanation
    private final void fullAddCount(long x, boolean wasUncontended) {
        int h;
        if ((h = ThreadLocalRandom.getProbe()) == 0) {
            ThreadLocalRandom.localInit();      // force initialization
            h = ThreadLocalRandom.getProbe();
            wasUncontended = true;
        }
        boolean collide = false;                // True if last slot nonempty
        for (;;) {
            CounterCell[] as; CounterCell a; int n; long v;
            if ((as = counterCells) != null && (n = as.length) > 0) {
                if ((a = as[(n - 1) & h]) == null) {
                    if (cellsBusy == 0) {            // Try to attach new Cell
                        CounterCell r = new CounterCell(x); // Optimistic create
                        //cellsBusy是一个修改数据时保持原子性的标记
                        if (cellsBusy == 0 &&
                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
                            boolean created = false;
                            try {     
                                // Recheck under lock
                                //将初始化的r对象的元素个数放在对应下标的位置    
                                CounterCell[] rs; int m, j;
                                if ((rs = counterCells) != null &&
                                    (m = rs.length) > 0 &&
                                    rs[j = (m - 1) & h] == null) {
                                    rs[j] = r;
                                    created = true;
                                }
                            } finally {
                                cellsBusy = 0;
                            }
                            if (created)
                                break;
                            continue;           // Slot is now non-empty
                        }
                    }
                    collide = false;
                }
                else if (!wasUncontended)       // CAS already known to fail
                    wasUncontended = true;      // Continue after rehash
                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
                    break;
                else if (counterCells != as || n >= NCPU)
                    collide = false;            // At max size or stale
                else if (!collide)
                    collide = true;
                // 扩容部分 同样通过cas去获得锁 
                else if (cellsBusy == 0 &&
                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
                    try {
                        if (counterCells == as) {// Expand table unless stale
                            CounterCell[] rs = new CounterCell[n << 1];//把countercell的大小扩大一倍,然后遍历数组,把数据添加到新的数组中
                            for (int i = 0; i < n; ++i)
                                rs[i] = as[i];
                            counterCells = rs;
                        }
                    } finally {
                        cellsBusy = 0;
                    }
                    collide = false;
                    continue;                   // Retry with expanded table
                }
                h = ThreadLocalRandom.advanceProbe(h);
            }
            //如果countercell为空 通过CAS(compareAndSwapInt)操作保障线程安全性
            else if (cellsBusy == 0 && counterCells == as &&
                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
                boolean init = false;
                try {                           // Initialize table
                    if (counterCells == as) {
                        //初始化一个长度为2的数组
                        CounterCell[] rs = new CounterCell[2];
                        //把x(元素的个数)保存在某个位置
                        rs[h & 1] = new CounterCell(x);
                        //赋值给全局变量counterCells
                        counterCells = rs;
                        init = true;
                    }
                } finally {
                    //释放锁
                    cellsBusy = 0;
                }
                if (init)
                    break;
            }
            //当上面的操作都失败的,那就去修改basecount,因为所有线程都去玩counterCells,那basecount就空闲了
            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
                break;                          // Fall back on using base
        }
    }

    链表转换成红黑树(这里牵扯到红黑树的知识,会在后续的博文中和大家专门聊)

    static final class TreeBin<K,V> extends Node<K,V> {
        TreeNode<K,V> root;
        volatile TreeNode<K,V> first;
        //保留抢到锁的线程
        volatile Thread waiter;
        volatile int lockState;
        static final int WRITER = 1; // set while holding write lock
        static final int WAITER = 2; // set when waiting for write lock
        static final int READER = 4; // increment value for setting read lock
    
        static int tieBreakOrder(Object a, Object b) {
            int d;
            if (a == null || b == null ||
                (d = a.getClass().getName().
                 compareTo(b.getClass().getName())) == 0)
                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
                     -1 : 1);
            return d;
        }
    
        //把链表转换成红黑树
        TreeBin(TreeNode<K,V> b) {
            super(TREEBIN, null, null, null);
            this.first = b;
            TreeNode<K,V> r = null;
            //初始化红黑树 
            for (TreeNode<K,V> x = b, next; x != null; x = next) {
                next = (TreeNode<K,V>)x.next;
                x.left = x.right = null;
                if (r == null) {
                    x.parent = null;
                    x.red = false;
                    r = x;
                }
                //进行添加  这里我会出一期关于红黑树的博文,之后再聊
                else {
                    K k = x.key;
                    int h = x.hash;
                    Class<?> kc = null;
                    for (TreeNode<K,V> p = r;;) {
                        int dir, ph;
                        K pk = p.key;
                        if ((ph = p.hash) > h)
                            dir = -1;
                        else if (ph < h)
                            dir = 1;
                        else if ((kc == null &&
                                  (kc = comparableClassFor(k)) == null) ||
                                 (dir = compareComparables(kc, k, pk)) == 0)
                            dir = tieBreakOrder(k, pk);
                            TreeNode<K,V> xp = p;
                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
                            x.parent = xp;
                            if (dir <= 0)
                                xp.left = x;
                            else
                                xp.right = x;
                            r = balanceInsertion(r, x);
                            break;
                        }
                    }
                }
            }
            this.root = r;
            assert checkInvariants(root);
        }

    总结(这两篇聊过的东西)

    使用:包含了一些java8的新方法

    原理分析:put方法内元素添加,构建数组

    解决hash冲突:使用了链式寻址法

    扩容:数据迁移,多线程并发协助迁移,高低位迁移(需要迁移的数据放在高位,不需要迁移的放在低位,然后一次性把这些放在新的数组中)

    元素的统计:使用数组和basecounter使用分片的思想进行统计

    当链表长度大于等于8,,并且数组长度大于等于64的时候,链表转换成红黑树

  • 相关阅读:
    cbitmap 获取RGB
    存稿
    VC单选按钮控件(Radio Button)用法(转)
    MFC文档视图中窗口切换 (2012-05-11 18:32:48)
    MFC 结束线程
    vs2010调试运行时弹出对话框:系统找不到指定文件
    fatal error C1189: #error : This file requires _WIN32_WINNT to be #defined at least to 0x0403. Value 0x0501 or higher is recommended.
    自定义消息
    数据分析与可视化--matplotlib
    数据分析与可视化--pandas
  • 原文地址:https://www.cnblogs.com/UpGx/p/14950085.html
Copyright © 2011-2022 走看看