Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
class Solution { public: int minimumTotal(vector<vector<int> > &triangle) { int m=triangle.size(); if(m==0)return 0; int n=triangle[0].size(); if(n==0)return 0; vector<int> f=triangle[m-1]; for(int i=m-2;i>=0;i--) { for(int j=0;j<i+1;j++) { f[j]=(f[j]<f[j+1]?f[j]:f[j+1])+triangle[i][j]; } } return f[0]; } };