zoukankan      html  css  js  c++  java
  • 机器学习14—SVD学习笔记

    test14.py

    #-*- coding:utf-8
    import sys
    sys.path.append("svdRec.py")
    
    import svdRec
    from numpy import *
    from numpy import linalg as la
    
    # U, Sigma, VT = linalg.svd([[1, 1], [7, 7]])
    # print(U)
    # print(Sigma)
    # print(VT)
    
    # Data = svdRec.loadExData()
    # U, Sigma, VT = linalg.svd(Data)
    # print(Sigma)
    #
    # Sig3 = mat([[Sigma[0], 0, 0], [0, Sigma[1], 0], [0, 0, Sigma[2]]])
    # res = U[:, :3]*Sig3*VT[:3, :]
    # print("res:")
    # print(res)
    #
    # myMat = mat(svdRec.loadExData())
    # ecl = svdRec.ecludSim(myMat[:, 0], myMat[:, 4])
    # print("ecl:")
    # print(ecl)
    # cos = svdRec.cosSim(myMat[:, 0], myMat[:, 4])
    # print("cos:")
    # print(cos)
    # pears = svdRec.pearsSim(myMat[:, 0], myMat[:, 4])
    # print("pears:")
    # print(pears)
    # myMat = mat(svdRec.loadExData())
    # myMat[0, 1] = myMat[0, 0] = myMat[1, 0] = myMat[2, 0] = 4
    # myMat[3, 3] = 2
    # print("myMat:")
    # print(myMat)
    #
    # tuiJian = svdRec.recommend(myMat, 2)
    # print("tuiJian:")
    # print(tuiJian)
    #
    # tuiJian1 = svdRec.recommend(myMat, 2, simMeas = svdRec.ecludSim)
    # print("tuiJian1:")
    # print(tuiJian1)
    #
    # tuiJian2 = svdRec.recommend(myMat, 2, simMeas = svdRec.pearsSim)
    # print("tuiJian2:")
    # print(tuiJian2)
    
    
    
    # myMat = mat(svdRec.loadExData2())
    # U, Sigma, VT = la.svd(mat(svdRec.loadExData2()))
    # print(Sigma)
    #
    # Sig2 = Sigma**2
    # total = sum(Sig2)
    # total9 = total*0.9
    # print("total9:")
    # print(total9)
    #
    # total3 = sum(Sig2[:3])
    # print("total3:")
    # print(total3)
    
    # svdRes = svdRec.recommend(myMat, 1, estMethod = svdRec.svdEst)
    # print("svdRes:")
    # print(svdRes)
    
    
    originalMat = svdRec.imgCompress(2)
    print(originalMat)
    
    print("over!!!")

    svdRec.py
    '''
    Created on Mar 8, 2011
    
    @author: Peter
    '''
    from numpy import *
    from numpy import linalg as la
    
    def loadExData():
        return[[0, 0, 0, 2, 2],
               [0, 0, 0, 3, 3],
               [0, 0, 0, 1, 1],
               [1, 1, 1, 0, 0],
               [2, 2, 2, 0, 0],
               [5, 5, 5, 0, 0],
               [1, 1, 1, 0, 0]]
        
    def loadExData2():
        return[[0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 5],
               [0, 0, 0, 3, 0, 4, 0, 0, 0, 0, 3],
               [0, 0, 0, 0, 4, 0, 0, 1, 0, 4, 0],
               [3, 3, 4, 0, 0, 0, 0, 2, 2, 0, 0],
               [5, 4, 5, 0, 0, 0, 0, 5, 5, 0, 0],
               [0, 0, 0, 0, 5, 0, 1, 0, 0, 5, 0],
               [4, 3, 4, 0, 0, 0, 0, 5, 5, 0, 1],
               [0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 4],
               [0, 0, 0, 2, 0, 2, 5, 0, 0, 1, 2],
               [0, 0, 0, 0, 5, 0, 0, 0, 0, 4, 0],
               [1, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0]]
        
    def ecludSim(inA,inB):
        return 1.0/(1.0 + la.norm(inA - inB))
    
    def pearsSim(inA,inB):
        if len(inA) < 3 : return 1.0
        return 0.5+0.5*corrcoef(inA, inB, rowvar = 0)[0][1]
    
    def cosSim(inA,inB):
        num = float(inA.T*inB)
        denom = la.norm(inA)*la.norm(inB)
        return 0.5+0.5*(num/denom)
    
    def standEst(dataMat, user, simMeas, item):
        n = shape(dataMat)[1]
        simTotal = 0.0; ratSimTotal = 0.0
        for j in range(n):
            userRating = dataMat[user,j]
            if userRating == 0: continue
            # test0 = dataMat[:,item].A>0
            # test1 = dataMat[:,j].A>0
            # test2 = logical_and(dataMat[:,item].A>0, dataMat[:,j].A>0)
            overLap = nonzero(logical_and(dataMat[:,item].A>0, dataMat[:,j].A>0))[0]
            if len(overLap) == 0: similarity = 0
            else: similarity = simMeas(dataMat[overLap,item], dataMat[overLap,j])
            print('the %d and %d similarity is: %f' % (item, j, similarity))
            simTotal += similarity
            ratSimTotal += similarity * userRating
        if simTotal == 0: return 0
        else: return ratSimTotal/simTotal
        
    def svdEst(dataMat, user, simMeas, item):
        n = shape(dataMat)[1]
        simTotal = 0.0; ratSimTotal = 0.0
        U,Sigma,VT = la.svd(dataMat)
        Sig4 = mat(eye(4)*Sigma[:4]) #arrange Sig4 into a diagonal matrix
        xformedItems = dataMat.T * U[:,:4] * Sig4.I  #create transformed items
        for j in range(n):
            userRating = dataMat[user,j]
            if userRating == 0 or j==item: continue
            similarity = simMeas(xformedItems[item,:].T, xformedItems[j,:].T)
            print('the %d and %d similarity is: %f' % (item, j, similarity))
            simTotal += similarity
            ratSimTotal += similarity * userRating
        if simTotal == 0: return 0
        else: return ratSimTotal/simTotal
    
    def recommend(dataMat, user, N=3, simMeas=cosSim, estMethod=standEst):
        unratedTest = nonzero(dataMat[user,:].A==0)
        unratedItems = nonzero(dataMat[user,:].A==0)[1]#find unrated items
        if len(unratedItems) == 0: return 'you rated everything'
        itemScores = []
        for item in unratedItems:
            estimatedScore = estMethod(dataMat, user, simMeas, item)
            itemScores.append((item, estimatedScore))
            # testSort = sorted(itemScores, key=lambda jj: jj[1], reverse=True)[:N]
        return sorted(itemScores, key=lambda jj: jj[1], reverse=True)[:N]
    
    def printMat(inMat, thresh=0.8):
        for i in range(32):
            for k in range(32):
                if float(inMat[i,k]) > thresh:
                    print(1),
                else: print(0),
            print('')
    
    def imgCompress(numSV=3, thresh=0.8):
        myl = []
        for line in open('0_5.txt').readlines():
            newRow = []
            for i in range(32):
                newRow.append(int(line[i]))
            myl.append(newRow)
        myMat = mat(myl)
        print("****original matrix******")
        printMat(myMat, thresh)
        U,Sigma,VT = la.svd(myMat)
        SigRecon = mat(zeros((numSV, numSV)))
        for k in range(numSV):#construct diagonal matrix from vector
            SigRecon[k,k] = Sigma[k]
        reconMat = U[:,:numSV]*SigRecon*VT[:numSV,:]
        print("****reconstructed matrix using %d singular values******" % numSV)
        printMat(reconMat, thresh)


  • 相关阅读:
    百度富文本编辑器的上传图片的路径问题
    laravel初次学习总结及一些细节
    macOS apache配置及开启虚拟服务器的开启,apache开启重写模式
    类似于qq空间类型的评论和回复
    向php提交数据及json
    mac 初次配置apache,及mac下安装mysql
    C#连接mysql数据库插入数据后获取自增长主键ID值
    PHP 真正多线程的使用
    C# 连接mysql数据库
    MySql状态查看方法 MySql如何查看连接数和状态?
  • 原文地址:https://www.cnblogs.com/Vae1990Silence/p/8664823.html
Copyright © 2011-2022 走看看