zoukankan      html  css  js  c++  java
  • POJ3264(RMQ入门)

    Balanced Lineup

    Time Limit: 5000 MS Memory Limit: 0 KB

    64-bit integer IO format: %I64d , %I64u Java class name: Main

    [Submit] [Status] [Discuss]

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q.
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ ABN), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    Source

    USACO 2007 January Silver
    ********************************************************/*/*****************************************************************************************
     1 #include<stdio.h>
     2 #include<stdio.h>
     3 #include<math.h>
     4 #define N 1500001
     5 #include<iostream>
     6 using namespace std;
     7 int maxsum[N][20],minsum[N][20];
     8 void RMQ(int num)
     9 {
    10     for(int j=1; j<20; j++)
    11     {
    12         for(int i=1; i<=num; i++)
    13         {
    14             if(i+(1<<(j-1))<=num)
    15             {
    16                 maxsum[i][j]=max(maxsum[i][j-1],maxsum[i+(1<<(j-1))][j-1]);//这里要加()在1前面,坑了我好久啊
    17                 minsum[i][j]=min(minsum[i][j-1],minsum[i+(1<<(j-1))][j-1]);
    18                // printf("%d %d
    ",maxsum[i][j],minsum[i][j]);
    19             }
    20         }
    21     }
    22 }
    23     int main()
    24     {
    25         int num,t,query;
    26         while(~scanf("%d%d",&num,&query))
    27         {
    28 
    29             for(int i=1; i<=num; i++)
    30             {
    31                 scanf("%d",&maxsum[i][0]);
    32                 minsum[i][0]=maxsum[i][0];
    33             }
    34             RMQ(num);
    35             int st,en,maxl,minl;
    36             while(query--)
    37             {
    38                 scanf("%d%d",&st,&en);
    39                 int k=(int)((log(en-st+1))/log(2.0));
    40                 maxl=max(maxsum[st][k],maxsum[en-(1<<k)+1][k]);
    41                 minl=min(minsum[st][k],minsum[en-(1<<k)+1][k]);
    42                printf("%d
    ",maxl-minl);
    43             }
    44         }
    45     }
    View Code

    之前发过这道题,然而忘加代码了,sorry.

  • 相关阅读:
    动态规划Dynamic Programming: Rod-Cutting Problem
    递归详解,全排列问题
    获取网站根目录Url
    oracle中操作表和权限
    mongo简单封装
    dapper的简单封装
    反射做字段更新日志
    nopcommerce +autofac +owin +webapi
    批处理命令执行程序
    MSMQ的简单使用
  • 原文地址:https://www.cnblogs.com/VectorLin/p/5268289.html
Copyright © 2011-2022 走看看