Problem:
Given an index k, return the kth row of the Pascal's triangle.
For example, given k = 3,
Return [1,3,3,1]
.
Note:
Could you optimize your algorithm to use only O(k) extra space?
Summary:
返回杨辉三角(帕斯卡三角)的第k行。
Solution:
1. 若以二维数组的形式表示杨辉三角,则可轻易推算出row[i][j] = row[i - 1][j - 1] + row[i - 1][j], 但在这道题中只要求返回一行,消耗空间是完全没有必要的。
我们可知若已知第i行的所有数值,则第i+1行的数值可以由row[j] = row[j - 1] + row[j]计算出,但若正向计算,则计算row[j+1]时所需的row[j]已被覆盖掉,故计算新的一行时从后往前计算即可。
1 vector<int> getRow(int rowIndex) { 2 vector<int> row(rowIndex + 1); 3 for (int i = 0; i <= rowIndex; i++) { 4 row[0] = row[i] = 1; 5 for (int j = i - 1; j > 0; j--) { 6 row[j] = row[j - 1] + row[j]; 7 } 8 } 9 10 return row; 11 }
2. 公式计算:ri = ri−1 ∗ (index − i + 1) / i
参考:http://blog.csdn.net/nomasp/article/details/50568802
1 vector<int> getRow(int rowIndex) { 2 vector<int> row(rowIndex + 1); 3 row[0] = row[rowIndex] = 1; 4 for (int i = 1; i <= (rowIndex + 1) / 2; i++) { 5 row[i] = row[rowIndex - i] = (unsigned long)(row[i - 1]) * (unsigned long)(rowIndex - i + 1) / i; 6 } 7 8 return row; 9 }