zoukankan      html  css  js  c++  java
  • 计算几何大模板

    有错指出,长期更新

    
    #include<cmath>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<complex>
    #include<vector>
    #define db double
    using namespace std;
    
    namespace Complex{
        typedef complex<double> Point;
        typedef Point Vector;
        db dot  (Vector a,Vector b){return real(conj(a)*b);}
        db cross(Vector a,Vector b){return imag(conj(a)*b);}
        Vector rotate(Vector a,db rad){return a*exp(Point(0,rad));}
    }
    
    namespace geometry{
    db eps=1e-8;
    int dcmp(db x){if(fabs(x)<eps)return 0;return x<0?-1:1;}
    const db pi=acos(-1);
    
    struct Point{
        db x,y;
        Point(db a=0,db b=0):x(a),y(b){}
        void in(){scanf("%lf%lf",&x,&y);}
    };
    
    typedef Point Vector;
    
    Vector operator +(Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);}
    Vector operator -(Point  a,Point  b){return Vector(a.x-b.x,a.y-b.y);}
    Vector operator *(Vector a,db     b){return Vector(a.x*b,a.y*b);    }
    Vector operator /(Vector a,db     b){return Vector(a.x/b,a.y/b);    }
    
    bool operator < (Point a,Point b){return a.x<b.x||(a.x==b.x&&a.y<b.y);      }
    bool operator ==(Point a,Point b){return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;}
    /*求叉积和点积*/
    db cross  (Vector a,Vector b){return a.x*b.y-a.y*b.x;}
    db dot    (Vector a,Vector b){return a.x*b.x+a.y*b.y;}
    /*求向量长度*/
    db length (Vector a)         {return sqrt(dot(a,a)); }
    /*求两个向量的夹角*/
    db angle  (Vector a,Vector b){return acos(dot(a,b)/length(a)/length(b));}
    /*求三角形面积*/
    db area   (Point a,Point b,Point c){return cross(b-a,c-a);              }
    db area2  (Point &a,Point &b,Point &c){return cross(b-a,c-a);           }
    /*求法线*/
    Vector normal(Vector a)      {db l=length(a);return Vector(-a.y/l,a.x/l);}
    /*旋转向量*/
    Vector rotate(Point a,db rad){return Vector(a.x*cos(rad)-a.y*sin(rad),a.x*sin(rad)+a.y*cos(rad));}
    /*求直线交点*/
    Point getlinecut(Point a,Vector u,Point b,Vector v){
        Vector w=a-b;
        db     t=cross(v,w)/cross(u,v);
        return a+u*t;
    }
    /*点到直线距离*/
    db distoline(Point p,Point a,Point b){
        Vector v1=b-a,v2=p-a;
        return fabs(cross(v1,v2)/length(v1));
    }
    /*求点到线段距离*/
    db distosegm(Point p,Point a,Point b){
        if(a==b) return length(p-a);
        Vector v1=b-a,v2=p-a,v3=p-b;
        if(dcmp(dot(v1,v2))<0) return length(v2);
        if(dcmp(dot(v1,v3))>0) return length(v3);
        return fabs(cross(v1,v2)/length(v1));
    }
    /*求点到直线的垂足*/
    Point getlinepro(Point p,Point a,Point b){
        Vector v=b-a;
        return a+v*(dot(v,p-a)/dot(v,v));
    }
    /*判断线段是否规范相交*/
    bool segmpropcut(Point a1,Point a2,Point b1,Point b2){
        db c1=cross(a2-a1,b1-a1),c2=cross(a2-a1,b2-a1);
        db c3=cross(b2-b1,a1-b1),c4=cross(b2-b1,a2-b1);
        return dcmp(c1)*dcmp(c2)<0&&dcmp(c3)*dcmp(c4)<0;
    }
    /*判断点是否在线段上*/
    bool onsegm(Point p,Point a,Point b){
        return dcmp(cross(a-p,b-p))==0&&dcmp(dot(a-p,b-p))<0;
    }
    /*求多边形的面积*/
    db polyarea(Point *p,int n){
        db ans=0;
        for(int i=2;i<=n-1;i++)ans+=area(p[1],p[i],p[i+1]);
        return ans/2;
    }
    /*求极角*/
    db pangle(Vector v){return atan2(v.y,v.x);}
    /*直线*/
    struct line{
        Vector v;
        Point p;
        db ang;
        line(){}
        line(Point a,Vector b):p(a),v(b){ang=atan2(v.y,v.x);}
        Point getp(db t){return p+v*t;}
        bool operator <(line a)const{return ang<a.ang;}
    };
    Point getlinecut(line a,line b){return getlinecut(a.p,a.v,b.p,b.v);}
    /*线段*/
    struct segment{
        Point s,t;
        Vector v;
        db ang;
        segment(){}
        segment(Point a,Point b):s(a),t(b){v=b-a;ang=atan2(v.y,v.x);}
    };
    bool segmpropcut(segment a,segment b){return segmpropcut(a.s,a.t,b.s,b.t);}
    bool onsegm(Point p,segment seg){return onsegm(p,seg.s,seg.t);}
    /*圆*/
    struct circle{
        Point o;
        db r;
        circle(Point a,db b):o(a),r(b){}
        Point getp(db rad){return Point(o.x+cos(rad)*r,o.y+sin(rad)*r);}
    };
    /*求直线与圆的交点,ans中存交点,返回交点个数*/
    int getlinecirclecut(line l,circle cir,vector <Point> &ans){
        db a=l.v.x,b=l.p.x-cir.o.x,c=l.v.y,d=l.p.y-cir.o.y;
        db e=a*a+c*c,f=2*(a*b+c*d),g=b*b+d*d-cir.r*cir.r;
        db delta=f*f-4*e*g;
        if(dcmp(delta)<0) return 0;
        if(dcmp(delta)==0) {
            db t1=-f/(2*e);
            ans.push_back(l.getp(t1));
            return 1;
        }
        db t1=(-f-sqrt(delta))/(2*e);ans.push_back(l.getp(t1));
        db t2=(-f+sqrt(delta))/(2*e);ans.push_back(l.getp(t2));
        return 2;
    }
    int getlinecirclecut(line l,circle cir,db &t1,db &t2,vector <Point> &ans){
        db a=l.v.x,b=l.p.x-cir.o.x,c=l.v.y,d=l.p.y-cir.o.y;
        db e=a*a+c*c,f=2*(a*b+c*d),g=b*b+d*d-cir.r*cir.r;
        db delta=f*f-4*e*g;
        if(dcmp(delta)<0) return 0;
        if(dcmp(delta)==0) {
            t1=t2=-f/(2*e);
            ans.push_back(l.getp(t1));
            return 1;
        }
        t1=(-f-sqrt(delta))/(2*e);ans.push_back(l.getp(t1));
        t2=(-f+sqrt(delta))/(2*e);ans.push_back(l.getp(t2));
        return 2;
    }
    /*求两圆相交的交点,答案存在ans里,返回交点个数,-1表示圆重合*/
    int getcircut(circle a,circle b,vector <Point> &ans){
        db d=length(a.o-b.o);
        if(dcmp(d)==0){if(dcmp(a.r-b.r)==0) return -1;return 0;}
        if(dcmp(a.r+b.r-d)<0) return 0;
        if(dcmp(fabs(a.r-b.r)-d)>0) return 0;
        db rad=pangle(a.o-b.o);
        db drad=acos((a.r*a.r+d*d-b.r*b.r)/(2*a.r*d));
        Point p1=a.getp(rad-drad),p2=a.getp(rad+drad);
        ans.push_back(p1);
        if(p1==p2) return 1;
        ans.push_back(p2);
        return 2;
    }
    /*求过一点到圆的切线,返回切线条数,存在ans里*/
    int gettan(Point a,circle c,Vector *ans){
        Vector u=c.o-a;
        db dist=length(u);
        if(dist<c.r) return 0;
        if(dcmp(dist-c.r)==0){
            ans[0]=rotate(u,pi/2);
            return 1;
        }
        db ang=asin(c.r/dist);
        ans[0]=rotate(u,-ang);
        ans[1]=rotate(u,+ang);
        return 2;
    }
    int gettan(Point a,circle c,vector <line> &ans){
        Vector u=c.o-a;
        db dist=length(u);
        if(dist<c.r) return 0;
        if(dcmp(dist-c.r)==0){
            ans.push_back(line(a,rotate(u,pi/2)));
            return 1;
        }
        db ang=asin(c.r/dist);
        ans.push_back(line(a,rotate(u,-ang)));
        ans.push_back(line(a,rotate(u,+ang)));
        return 2;
    }
    db dis2(Point a,Point b){return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);}
    /*求两个圆的公切线,-1为无穷条,a[i],b[i]分别为两圆上第i条切线的切点*/
    int getcirtan(circle c1,circle c2,Point *a,Point *b){
        int cnt=0;
        if(c1.r<c2.r) swap(c1,c2),swap(a,b);
        Point o1=c1.o,o2=c2.o;
        db d2=dis2(o1,o2);
        db rdiff=c1.r-c2.r;
        if(d2<rdiff*rdiff) return 0;
        db base=pangle(o2-o1);
        if(d2==0&&c1.r==c2.r) return -1;
        if(d2==rdiff*rdiff) {
            a[++cnt]=c1.getp(base);b[cnt]=c2.getp(base);return 1;
        }
        db rsum=c1.r+c2.r;
        db ang=acos((c1.r-c2.r)/sqrt(d2));
        a[++cnt]=c1.getp(base+ang);b[cnt]=c2.getp(base+ang);
        a[++cnt]=c1.getp(base-ang);b[cnt]=c2.getp(base-ang);
        if(d2==rsum*rsum){
            ang=acos((c1.r+c2.r)/sqrt(d2));
            a[++cnt]=c1.getp(base+ang);b[cnt]=c2.getp(base+ang);
            a[++cnt]=c1.getp(base-ang);b[cnt]=c2.getp(base-ang);
        }
        return cnt;
    }
    int getcirtan(circle a,circle b,vector <line> &ans){
        Point *a1=new Point[5];
        Point *b1=new Point[5];
        int now=getcirtan(a,b,a1,b1);
        for(int i=1;i<=now;i++){ans.push_back(line(a1[i],a1[i]-b1[i]));}
        delete [] a1;
        delete [] b1;
        return now;
    }
    /*求三角形的外接圆*/
    circle outcircle(Point p1,Point p2,Point p3){
      db Bx = p2.x-p1.x, By = p2.y-p1.y;
      db Cx = p3.x-p1.x, Cy = p3.y-p1.y;
      db D = 2*(Bx*Cy-By*Cx);
      db cx = (Cy*(Bx*Bx+By*By) - By*(Cx*Cx+Cy*Cy))/D + p1.x;
      db cy = (Bx*(Cx*Cx+Cy*Cy) - Cx*(Bx*Bx+By*By))/D + p1.y;
      Point p = Point(cx, cy);
      return circle(p, length(p1-p));
    }
    /*求三角形的内切圆*/
    circle inscircle(Point p1,Point p2,Point p3){
      db a = length(p2-p3);
      db b = length(p3-p1);
      db c = length(p1-p2);
      Point p = (p1*a+p2*b+p3*c)/(a+b+c);
      return circle(p, distoline(p, p1, p2));
    }
    /*多边形*/
    struct Poly{
        Point *p;
        db are;
        int sze,newsze;
        bool isare;
        void resize(){
            if(sze<newsze-1) return;
            Point *now=p;
            newsze=newsze<<1|1;
            p=new Point[newsze];
            for(int i=1;i<=sze;i++)p[i]=now[i];
            delete [] now;
        }
        Poly(){isare=0;}
        Poly(int size){p=new Point[size];newsze=size;isare=0;}
        void insert(Point a){
            resize();
            p[++sze]=a;isare=0;
        }
        int size(){return sze;}
        db getarea(){
            if(isare) return are;
            are=0;
            for(int i=2;i<=sze-1;i++){
                are+=area(p[1],p[i],p[i+1]);
            }
            are/=2;
            return are;
        }
        Point &operator [](int a){return p[a];}
        void clear(){sze=0;delete [] p;p=new Point[5];newsze=5;}
        ~Poly(){delete [] p;}
    };
    /*下标均从1开始*/
    struct VPoly{
        vector <Point> p;
        void insert(Point a){p.push_back(a);}
        Point &operator [](int a){return p[a-1];}
        int size(){return p.size();}
        void clear(){p.clear();}
    };
    /*判断点与多边形关系,1内部,0外部,-1边上*/
    int ispointinpoly(Point p,Poly poly){
        int wn=0;
        int n=poly.size();
        for(int i=1;i<=n;i++){
            if(onsegm(p,poly[i],poly[(i+1)%n])) return -1;
            int k =dcmp(cross(poly[(i+1)%n]-poly[i],p-poly[i]));
            int d1=dcmp(poly[i].y-p.y);
            int d2=dcmp(poly[(i+1)%n].y-p.y);
            if(k>0&&d1<=0&&d2>0) wn++;
            if(k>0&&d2<=0&&d1>0) wn--;
        }
        if(wn!=0) return 1;
        return 0;
    }
    /*求凸包,答案装在ans,若不希望凸包边上有点就用下一个函数*/
    int convexhull(Point *p,int n,Point *ans){
        sort(p+1,p+n+1);
        int m=0;
        for(int i=1;i<=n;i++){
            while(m>2&&dcmp(cross(ans[m-1]-ans[m-2],p[i]-ans[m-2]))<=0) m--;
            ans[++m]=p[i];
        }
        int k=m;
        for(int i=n-1;i>=1;i--){
            while(m>=k&&dcmp(cross(ans[m-1]-ans[m-2],p[i]-ans[m-2]))<=0) m--;
            ans[++m]=p[i];
        }
        return m;
    }
    int convexhull_noside(Point *p,int n,Point *ans){
        sort(p+1,p+n+1);
        int m=0;
        for(int i=1;i<=n;i++){
            while(m>2&&dcmp(cross(ans[m-1]-ans[m-2],p[i]-ans[m-2]))<0) m--;
            ans[++m]=p[i];
        }
        int k=m;
        for(int i=n-1;i>=1;i--){
            while(m>=k&&dcmp(cross(ans[m-1]-ans[m-2],p[i]-ans[m-2]))<0) m--;
            ans[++m]=p[i];
        }
        return m;
    }
    /*下标从0开始*/
    int convexhull_zero(Point *p,int n,Point *ans){
        sort(p,p+n);
        int m=0;
        for(int i=0;i<n;i++){
            while(m>1&&dcmp(cross(ans[m-1]-ans[m-2],p[i]-ans[m-2]))<=0) m--;
            ans[m++]=p[i];
        }
        int k=m;
        for(int i=n-2;i>=0;i--){
            while(m>=k&&dcmp(cross(ans[m-1]-ans[m-2],p[i]-ans[m-2]))<=0) m--;
            ans[m++]=p[i];
        }
        if(n>1)m--;
        return m;
    }
    int convexhull_zero_noside(Point *p,int n,Point *ans){
        sort(p,p+n);
        int m=0;
        for(int i=0;i<n;i++){
            while(m>1&&dcmp(cross(ans[m-1]-ans[m-2],p[i]-ans[m-2]))<=0) m--;
            ans[m++]=p[i];
        }
        int k=m;
        for(int i=n-2;i>=0;i--){
            while(m>k&&dcmp(cross(ans[m-1]-ans[m-2],p[i]-ans[m-2]))<=0) m--;
            ans[m++]=p[i];
        }
        if(n>1)m--;
        return m;
    }
    /*半平面交*/
    /*判断点在直线的坐边,线上不算*/
    bool onleft(line l,Point p){
        return dcmp(cross(l.v,p-l.p))>0;
    }
    /*半平面交可以为点时使用*/
    bool onleft2(line l,Point p){
        return dcmp(cross(l.v,p-l.p))>=0;
    }
    /*返回点数*/
    /*下标为0*/
    int halfcut(line *l,int n,Point *ans){
        sort(l,l+n);
        int fi,la;
        Point *p= new Point[n];
        line *q= new line[n];
        q[fi=la=0]=l[0];
        for(int i=1;i<n;i++){
            while(fi<la&&!onleft(l[i],p[la-1])) la--;
            while(fi<la&&!onleft(l[i],p[fi]))   fi++;
            q[++la]=l[i];
            if(fabs(cross(q[la].v,q[la-1].v))<eps){
                la--;
                if(onleft(q[la],l[i].p)) q[la]=l[i];
            }
            if(fi<la) p[la-1]=getlinecut(q[la-1],q[la]);
        }
        while(fi<la&&!onleft(q[fi],p[la-1]))la--;
        if(la-fi<=1) return 0;
        p[la]=getlinecut(q[la],q[fi]);
        int m=0;
        for(int i=fi;i<=la;i++) ans[m++]=p[i];
        delete [] p;
        delete [] q;
        return m;
    }
    /*下标为1,可能有错*/
    int halfcut_one(line *l,int n,Point *ans){
        sort(l+1,l+n+1);
        int fi,la;
        Point *p= new Point[n];
        line *q= new line[n];
        q[fi=la=1]=l[1];
        for(int i=2;i<=n;i++){
            while(fi<la&&!onleft(l[i],p[la-1])) la--;
            while(fi<la&&!onleft(l[i],p[fi]))   fi++;
            q[++la]=l[i];
            if(fabs(cross(q[la].v,q[la].v))<eps){
                la--;
                if(onleft(q[la],l[i].p)) q[la]=l[i];
            }
            if(fi<la) p[la-1]=getlinecut(q[la-1],q[la]);
        }
        while(fi<la&&!onleft(q[fi],p[la-1]))la--;
        if(la-fi<=1) return 0;
        p[la]=getlinecut(q[la],q[fi]);
        int m=0;
        for(int i=fi;i<=la;i++) ans[++m]=p[i];
        delete [] p;
        delete [] q;
        return m;
    }
    /*旋转卡壳*/
    db dsts(Point a,Point b,Point c,Point d){
        return min(min(distosegm(c,a,b),distosegm(d,a,b)),min(distosegm(a,c,d),distosegm(b,c,d)));
    }
    /*求两个凸多边形之间的最短距离, U17652 岛屿连接:https://www.luogu.org/record/show?rid=5244376*/
    db get_two_poly_min_dis(Point *p1,Point *p2,int n,int m){
        int pos1=0,pos2=0;
        db ans=1e90;
        for(int i=0;i<n;i++){
            if(p1[i].y>=p1[pos1].y){
                if(p1[i].y>p1[pos1].y) pos1=i;
                else if(p1[i].x>p1[pos1].x) pos1=i;
            }
        }
        for(int i=0;i<m;i++){
            if(p2[i].y<=p2[pos2].y){
                if(p2[i].y<p2[pos2].y) pos2=i;
                else if(p2[i].x<p2[pos2].x) pos2=i;
            }
        }
        db ls;
        for(int i=0;i<n;i++){
            while(ls=(cross(p1[(pos1+1)%n]-p1[pos1],p2[(pos2+1)%m]-p1[pos1])-cross(p1[(pos1+1)%n]-p1[pos1],p2[pos2]-p1[pos1]))>eps)
            pos2=(pos2+1)%m;
            if(ls<-eps) ans=min(ans,distosegm(p2[pos2],p1[(pos1+1)%n],p1[pos1]));
            else ans=min(ans,dsts(p1[(pos1+1)%n],p1[pos1],p2[(pos2+1)%m],p2[pos2]));
            pos1=(pos1+1)%n;
        }
        return ans;
    }
    db dis(Point a,Point b){return length(a-b);}
    /*求凸多边形的直径*/
    db RotatingCaliper(int m,Point *ch)
    {
        int q = 1;
        ch[m] = ch[0];
        db ans = 0;
        for(int p = 0; p < m; p++)
        {
            while(fabs(cross(ch[q+1]-ch[p+1], ch[p]-ch[p+1])) > fabs(cross(ch[q]-ch[p+1], ch[p]-ch[p+1]))) q = (q+1)%m;
            ans = max(ans,max(dis(ch[p],ch[q]),dis(ch[p+1],ch[q+1])));
            ans = max(ans,max(dis(ch[p],ch[q+1]),dis(ch[p+1],ch[q])));
        }
        return ans;
    }
    /*角度转弧度*/
    db torad(db deg){return deg/180*pi;}
    /*******三维几何********/
    /*经纬度转换为空间坐标*/
    void get_coord(db r,db lat,db lng,db &x,db &y,db &z){
        lat=torad(lat);
        lng=torad(lng);
        x=r*cos(lat)*cos(lng);
        y=r*cos(lat)*sin(lng);
        z=r*sin(lat);
    }
    struct Point3{
        db x,y,z;
        Point3(db a=0,db b=0,db c=0):x(a),y(b),z(c){}
    };
    typedef Point3 Vector3;
    Vector3 operator +(Vector3 a,Vector3 b){return Vector3(a.x+b.x,a.y+b.y,a.z+b.z);}
    Vector3 operator -(Point3  a,Point3  b){return Vector3(a.x-b.x,a.y-b.y,a.z-b.z);}
    Vector3 operator *(Vector3 a,db      b){return Vector3(a.x*b,  a.y*b,  a.z*b)  ;}
    Vector3 operator /(Vector3 a,db      b){return Vector3(a.x/b,  a.y/b,  a.z/b)  ;}
    db dot3(Vector3 a,Vector3 b){return a.x*b.x+a.y*b.y+a.z*b.z;}
    Vector3 cross(Vector3 a,Vector3 b){return Vector3(a.y*b.z-a.z*b.y,a.z*b.x-a.x*b.z,a.x*b.y-a.y*b.x);}
    
    }
    using namespace geometry;
    int main(){
        return 0;
    }
    
  • 相关阅读:
    Django + Uwsgi + Nginx 的概念
    ubantu+nginx+uwsgi+django部署
    FileZilla以root用户登录Linux
    全文检索django-haystack+jieba+whoosh
    七牛云上传视频
    JWT登录与多方式登录
    vue绑定用户页面
    绑定微博用户接口
    vue微博回调空页面
    微博回调接口
  • 原文地址:https://www.cnblogs.com/VictoryCzt/p/10053444.html
Copyright © 2011-2022 走看看