zoukankan      html  css  js  c++  java
  • Educational Codeforces Round 71 (Rated for Div. 2)

    A. There Are Two Types Of Burgers

    水题。题意:给你面包片数,两种不同的肉饼数(制作一个汉堡要消耗两片面包和一片肉饼),之后再给你两种不同的汉堡售价,问你如何取得最大收益。

    思路:照题意模拟即可 ,简单贪心。

    #include <iostream>
    #include <sstream>
    #include <cstring>
    #include <string>
    #include <cstdio>
    #include <cstdlib>
    #include <vector>
    using namespace std;
     
    int main()
    {
        int t;
        scanf("%d", &t);
        while (t--)
        {
            int b, p, f;
            int h, c;
            cin >> b >> p >> f;
            cin >> h >> c;
            if (h > c)
            {
                int sum = 0;
                while (b >= 2 && p)
                    sum += h, b -= 2, p--;
                while (b >= 2 && f)
                    sum += c, b -= 2, f--;
                cout << sum << endl;
            }
            else
            {
                int sum = 0;
                while (b >= 2 && f)
                    sum += c, b -= 2, f--;
                while (b >= 2 && p)
                    sum += h, b -= 2, p--;
                cout << sum << endl;
            }
        }
    }
    View Code

    B. Square Filling

    算是水题吧。但是当时我想不出来(我还是太菜了wwww),还去问了子巨(子巨tql)。

    暴力枚举判断即可。

    题意:你有一个0矩阵。问你是否能经过操作变成题目给你的矩阵。

    思路:枚举矩阵的每一个点。之后依次turn(将周围变成1),之后check是否与给出矩阵相符。若不符则turn_back,符合则压入vector。

    注意的是可能存在都为0的情况,所以在最开始读入矩阵时,要加入flag判断是否题目给出的是0矩阵。

    #include <iostream>
    #include <sstream>
    #include <cstring>
    #include <string>
    #include <cstdio>
    #include <cstdlib>
    #include <vector>
    using namespace std;
    int n, m;
    int cnt;
    int sample[51][51];
    int temp[51][51];
    int tmp[2][2];
    vector <int> ans;
    int final_check(){
        for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) if (temp[i][j] != sample[i][j]) return 1;
        return 0;
    }
    void turn_back(int x, int y){
        for (int i = x; i <= x + 1; i++)
            for (int j = y; j <= y + 1; j++)
                temp[i][j] = tmp[i-x][j-y];
    }
    
    void turn(int x, int y){
        for (int i = 0; i <=  1; i++)
            for (int j = 0; j <= 1; j++)
                tmp[i][j] = temp[x+i][y+j];
    
        for (int i = x; i <= x + 1; i++){
            for (int j = y; j <= y + 1; j++){
                temp[i][j] = 1;
                if (temp[i][j] != sample[i][j]){
                    turn_back(x, y);
                    return ;
                }
            }
        }
        cnt++; ans.push_back(x); ans.push_back(y);
    }
    
    int main()
    {
        cin >> n >> m;
        int flag = 0; //判断是否为0矩阵
        for (int i = 0; i < n; i++)
            for (int j = 0; j < m; j++){
                scanf("%d", &sample[i][j]);
                if (sample[i][j]) flag = 1;
            }
        for (int i = 0; i < n-1; i++) for (int j = 0; j < m-1; j++) turn(i, j);
    
        if (!flag) cout << "0" << endl;
        else if (!cnt || final_check()) cout << "-1" << endl;
        else{
            cout << cnt << endl;
            for (int i = 0; i < ans.size(); i+=2)
                cout << ans[i]+1 << " " << ans[i+1]+1 << endl;
        }
        return 0;
    }
    View Code

    C. Gas Pipeline(补题)

    题意:二进制01串。为1代表这个地方得是高度为2的柱子,为0代表可以为高度为1或者2的柱子。

    起点和终点柱子高度都为1。同时横向走的时候需要管道。柱子的单位花费是b,管道的单位花费是a。问怎么安排使得花费最小

    思路:这道题有两种思路贪心与DP。

    dp:读题不难发现,对于每个地方,要么是低位,要么是高位,影响因素只有花费和1的位置。

    易得dp转移方程为  1.dp[i][0]=min(dp[i-1][1]+2*a+b,dp[i-1][0]+a+b);
              2.dp[i][1]=min(dp[i-1][1]+a+2*b,dp[i-1][0]+2*a+2*b);
    DP的代码:

    #include <cstring>
    #include <algorithm>
    #include <cstdio>
    typedef long long ll;
    using namespace std;
    #define maxn 200000 + 100
    char s[maxn];
    ll dp[maxn][2];
    int main()
    {
        ll n, a, b, t;
        scanf("%lld", &t);
        while (t--){
            scanf("%lld %lld %lld %s", &n, &a, &b, s);
            memset(dp, 0x3f, sizeof(dp));
            dp[0][0] = b; //一开始必然是低位
            for (ll i = 1; i <= n; i++){
                if ((s[i] == '0' && s[i-1] == '0') || i == n)
                    dp[i][0] = min(dp[i-1][1] + 2 * a + b, dp[i-1][0] + a + b);
                dp[i][1] = min(dp[i-1][1] + a + 2 * b, dp[i-1][0] + 2 * a + 2 * b);
            }
            printf("%lld
    ", dp[n][0]);
        }
    }
    View Code

    贪心:如果有n个点的话,就会有n+1个柱子。字符串为1的话,1这个格子代表的两个点都必须是是高柱子。

    首先确定基础花费:n个管道:n*a,n+1个低柱子:n*b,2个转折管道:2*a。中间可以高柱子的部分,假设长度为x,选择高柱子,额外花费为x*b。选择低柱子,花费为2*a。选择最小的就可以了。

    贪心代码:

    #include <cstdio>
    #include <algorithm>
    #include <iostream>
    #include <cstring>
    #define  maxn  200000 + 10
    #define inf 0x3f3f3f3f
    using namespace std;
    typedef long long ll;
    
    ll rec_pilar[maxn];
    char s[maxn];
    int main(){
        ll t; scanf("%lld", &t);
        while (t--){
            memset(rec_pilar, 0, sizeof(rec_pilar));
            ll n, a, b;
            scanf("%lld %lld %lld", &n, &a, &b);
            scanf("%s", s);
            //st和ed是用来记录高位的最左边和最右边
            ll st = inf, ed = 0;
            for (ll i = 0; i < n; i++){
                //若s为1的话那么1左右两边的柱子都应该是高位
                if (s[i] == '1'){
                    rec_pilar[i] = 1;
                    rec_pilar[i+1] = 1;
                    st = min(st, i);
                    ed = max(ed, i + 1);
                }
            }
    
            ll num0 = 0,num1 = 0; //num0记录低位,num1记录高位
            ll ans = 0;
            for (ll i = st; i <= ed; i++){
                ll tmp = 0;
                if (rec_pilar[i] == 0) num0++;
                else{
                    num1++;
                    //每次加上贪心结果
                    ans += min(num0 * b, 2 * a);
                    num0 = 0;
                }
            }
    
            ans += 2 * a + n * a + (n + 1) * b + num1 * b;
            //要是一直都是低位
            if (st == inf && ed == 0) ans -= 2 * a;
            printf("%lld
    ", ans);
        }
        return 0;
    }
    View Code

     D. Number Of Permutations(补题)

    题意:给出n组二元组(x,y)。求多少种排列,使得x不递增(包括相等),y不递增(包括相等)。

    思路:反向求good array,那就在总方案数 n! 中把bad array全部减掉
    我们先把数组按照a排序,那么因为第一维是不降的方案就可以计算出来了,就是对于相同的一段a,他们内部可以随便交换位置,那么这段长度为len的相同的a就可以贡献 len! ,把所有len!乘起来就是 第一维不降的方案cnt1
    同理按照b排序,求出第二维不降的总方案数cnt2。

    之后会发现如果在a中有相同段的同时b中的相同段也有的话,就会有重复。所以之后再通过上面一样的方式乘出cnt3。如果不满足,那么说明没有重复方案,cnt3 = 0
    最后答案就是 n!-cnt1-cnt2+cnt3

    参考博客:

    https://blog.csdn.net/liufengwei1/article/details/100030671

    https://www.cnblogs.com/guangheli/p/11399824.html

    #include <cstdio>
    #include <iostream>
    #include <cstring> 
    #include <algorithm>
    #define maxn 300000 + 100
    typedef long long ll;
    const int mod = 998244353;
    using namespace std;
    ll c[maxn]; 
    int n;
    struct node {
        int a, b;
    }a[maxn];
       
    bool cmp1(node a, node b) {
        if (a.a == b.a)
            return a.b < b.b;
        return a.a < b.a;
    }
    bool cmp2(node a, node b) {
        if (a.b == b.b)
            return a.a < b.a;
        return a.b < b.b;
    }
    int main() {
        scanf("%d", &n);  
        ll cnt1, cnt2, cnt3;
        int j, i;
        cnt1 = cnt2 = cnt3 = c[0] = 1;
        for(int i = 1; i < maxn; i++) 
            c[i] = 1ll * c[i-1] * i % mod;
        for(int i=0;i<n;++i) scanf("%d %d",&a[i].a,&a[i].b);
        sort(a,a+n, cmp1);
        for(i=0;i<n;i=j) {
            for(j=i;j<n&&a[j].a==a[i].a;++j);  
            cnt1=cnt1*c[j-i]%mod;    
        }
        sort(a,a+n,cmp2);
        for(i=0;i<n;i=j) {
            for(j=i;j<n&&a[j].b==a[i].b;++j);
            cnt2=cnt2*c[j-i]%mod; 
        }
        int flag=0;
        for(i=1;i<n;++i) if(a[i].a<a[i-1].a) flag=1;
        if(flag) 
            printf("%lld
    ",(c[n]-(cnt1+cnt2)%mod+mod)%mod);
        else {
            for(i=0;i<n;i=j) {
                for(j=i;j<n&&a[j].a==a[i].a&&a[j].b==a[i].b;++j);  
                cnt3=cnt3*c[j-i]%mod;  
            }
            printf("%lld
    ",(c[n]-(cnt1+cnt2-cnt3+mod)%mod+mod)%mod);  
        }
        return 0;
    }
    View Code
  • 相关阅读:
    神经网络和深度学习之——前馈神经网络
    神经网络和深度学习之感知器工作原理
    神经网络和深度学习之神经元和感知器
    基于keras的BiLstm与CRF实现命名实体标注
    基于双向BiLstm神经网络的中文分词详解及源码
    Net Core中数据库事务隔离详解——以Dapper和Mysql为例
    利用卷积神经网络(VGG19)实现火灾分类(附tensorflow代码及训练集)
    AlexNet 网络详解及Tensorflow实现源码
    ASP.NET Core MVC I/O编程模型
    Tensorflow开发环境配置及其基本概念
  • 原文地址:https://www.cnblogs.com/Vikyanite/p/11427193.html
Copyright © 2011-2022 走看看