zoukankan      html  css  js  c++  java
  • 从源码理解Druid连接池原理

    前言

    在我们平时开发中,使用数据库连接池时使用阿里的Druid连接池已经比较常见了,但是我们在集成到Springboot时似乎非常简单,只需要简单的配置即可使用,那么Druid是怎么加载的呢,本文就从源码层面进行揭秘

    使用

    首先简单的介绍下如何使用

    1、pom.xml加载jar包,直接使用集成springboot的jar

    <dependency>
        <groupId>com.alibaba</groupId>
        <artifactId>druid-spring-boot-starter</artifactId>
        <version>1.1.10</version>
    </dependency>

    2、application.properties进行配置

    spring.datasource.url=jdbc:mysql://localhost:3306/mynote
    spring.datasource.username=root
    spring.datasource.password=root
    # 使用阿里的DruidDataSource数据源
    spring.datasource.type=com.alibaba.druid.pool.DruidDataSource
    spring.datasource.driverClassName=com.mysql.cj.jdbc.Driver
    # 初始化连接数,默认为0
    spring.datasource.druid.initial-size=0
    # 最大连接数,默认为8
    spring.datasource.druid.max-active=8

    主要配置参数就是初始化连接数和最大连接数,最大连接数一般不需要配置的太大,一般8核cpu使用8个线程就可以了,原因是8核cpu同时可以处理的线程数只有8,设置的太大反而会造成CPU时间片的频繁切换

    源码

    首先我们没有做任何代码上的配置,为什么druid可以加载呢?那么就很容易联想到springboot的自动装配机制,所以我们看druid-spring-boot-starter jar包,这是一个start组件,所以我们直接看他的spring.factories文件,自动装配的机制这里不做介绍,可以看这篇文章

     1 @Configuration
     2 @ConditionalOnClass(DruidDataSource.class)
     3 @AutoConfigureBefore(DataSourceAutoConfiguration.class)
     4 @EnableConfigurationProperties({DruidStatProperties.class, DataSourceProperties.class})
     5 @Import({DruidSpringAopConfiguration.class,
     6     DruidStatViewServletConfiguration.class,
     7     DruidWebStatFilterConfiguration.class,
     8     DruidFilterConfiguration.class})
     9 public class DruidDataSourceAutoConfigure {
    10 
    11     private static final Logger LOGGER = LoggerFactory.getLogger(DruidDataSourceAutoConfigure.class);
    12 
    13     @Bean(initMethod = "init")
    14     @ConditionalOnMissingBean
    15     public DataSource dataSource() {
    16         LOGGER.info("Init DruidDataSource");
    17         return new DruidDataSourceWrapper();
    18     }
    19 }

    初始化了一个DataSource,实现类是DruidDataSourceWrapper,这个DataSource就是我们jdk提供jdbc操作的一个很重要的接口

    到这里DataSource已经初始化完成了

    我们开始从使用的地方入手,我的项目是基于Mybatis查询数据库的,这里从Mybatis查询开始入手

    我们都知道Mybatis查询最终必定会从mybatis的Executor的query开始执行

    所以我们在BaseExecutor的query方法打上断点,果然进来了,然后我们继续看

     1 @Override
     2   public <E> List<E> query(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql) throws SQLException {
     3     ErrorContext.instance().resource(ms.getResource()).activity("executing a query").object(ms.getId());
     4     if (closed) {
     5       throw new ExecutorException("Executor was closed.");
     6     }
     7     if (queryStack == 0 && ms.isFlushCacheRequired()) {
     8       clearLocalCache();
     9     }
    10     List<E> list;
    11     try {
    12       queryStack++;
    13       list = resultHandler == null ? (List<E>) localCache.getObject(key) : null;
    14       if (list != null) {
    15         handleLocallyCachedOutputParameters(ms, key, parameter, boundSql);
    16       } else {
    17           // 核心代码
    18         list = queryFromDatabase(ms, parameter, rowBounds, resultHandler, key, boundSql);
    19       }
    20     } finally {
    21       queryStack--;
    22     }
    23    ......
    24     return list;
    25   }

    我们只看核心代码,进入queryFromDatabase

    private <E> List<E> queryFromDatabase(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql) throws SQLException {
        List<E> list;
        localCache.putObject(key, EXECUTION_PLACEHOLDER);
        try {
          // 核心代码
          list = doQuery(ms, parameter, rowBounds, resultHandler, boundSql);
        } finally {
          localCache.removeObject(key);
        }
        localCache.putObject(key, list);
        if (ms.getStatementType() == StatementType.CALLABLE) {
          localOutputParameterCache.putObject(key, parameter);
        }
        return list;
      }

    继续跟

     1 @Override
     2   public <E> List<E> doQuery(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, BoundSql boundSql) throws SQLException {
     3     Statement stmt = null;
     4     try {
     5       Configuration configuration = ms.getConfiguration();
     6       StatementHandler handler = configuration.newStatementHandler(wrapper, ms, parameter, rowBounds, resultHandler, boundSql);
     7       // 核心代码
     8       stmt = prepareStatement(handler, ms.getStatementLog());
     9       return handler.query(stmt, resultHandler);
    10     } finally {
    11       closeStatement(stmt);
    12     }
    13   }

    这里我们看到获取了一个Statement ,这个Statement 是我们java原生操作数据库的一个很重要的类,这个Statement 应该是需要从一个数据库连接(Connection)上获取的,这里就很重要了,所以我们就需要看在里面是怎么获取Connection的就可以了

    1   private Statement prepareStatement(StatementHandler handler, Log statementLog) throws SQLException {
    2     Statement stmt;
    3     // 核心
    4     Connection connection = getConnection(statementLog);
    5     stmt = handler.prepare(connection, transaction.getTimeout());
    6     handler.parameterize(stmt);
    7     return stmt;
    8   }

    继续

    1 protected Connection getConnection(Log statementLog) throws SQLException {
    2     // 核心代码
    3     Connection connection = transaction.getConnection();
    4     if (statementLog.isDebugEnabled()) {
    5       return ConnectionLogger.newInstance(connection, statementLog, queryStack);
    6     } else {
    7       return connection;
    8     }
    9   }

    核心代码,获取Connection,进入了SpringManagedTransaction的getConnection方法

    1 @Override
    2   public Connection getConnection() throws SQLException {
    3     if (this.connection == null) {
    4       // 核心代码
    5       openConnection();
    6     }
    7     return this.connection;
    8   }

    继续

    private void openConnection() throws SQLException {
        // 核心代码
        this.connection = DataSourceUtils.getConnection(this.dataSource);
        this.autoCommit = this.connection.getAutoCommit();
        this.isConnectionTransactional = DataSourceUtils.isConnectionTransactional(this.connection, this.dataSource);
    
        LOGGER.debug(() ->
            "JDBC Connection ["
                + this.connection
                + "] will"
                + (this.isConnectionTransactional ? " " : " not ")
                + "be managed by Spring");
      }

    核心代码处,这个this.dataSource就是我们一开始通过自动装配初始化的。

    DataSourceUtils这个类是spring提供的,也就是最终数据源的策略是通过spring提供的扩展机制,实现不同的dataSource来实现不同功能的

    继续

    public static Connection getConnection(DataSource dataSource) throws CannotGetJdbcConnectionException {
            try {
                // 核心代码
                return doGetConnection(dataSource);
            }
            catch (SQLException ex) {
                throw new CannotGetJdbcConnectionException("Failed to obtain JDBC Connection", ex);
            }
            catch (IllegalStateException ex) {
                throw new CannotGetJdbcConnectionException("Failed to obtain JDBC Connection: " + ex.getMessage());
            }
        }

    继续

    public static Connection doGetConnection(DataSource dataSource) throws SQLException {
            Assert.notNull(dataSource, "No DataSource specified");
    
            ConnectionHolder conHolder = (ConnectionHolder) TransactionSynchronizationManager.getResource(dataSource);
            if (conHolder != null && (conHolder.hasConnection() || conHolder.isSynchronizedWithTransaction())) {
                conHolder.requested();
                if (!conHolder.hasConnection()) {
                    logger.debug("Fetching resumed JDBC Connection from DataSource");
                    conHolder.setConnection(fetchConnection(dataSource));
                }
                return conHolder.getConnection();
            }
            // Else we either got no holder or an empty thread-bound holder here.
    
            logger.debug("Fetching JDBC Connection from DataSource");
            // 核心代码
            Connection con = fetchConnection(dataSource);
    
            ......
            return con;
        }
    private static Connection fetchConnection(DataSource dataSource) throws SQLException {
            // 核心代码
            Connection con = dataSource.getConnection();
            if (con == null) {
                throw new IllegalStateException("DataSource returned null from getConnection(): " + dataSource);
            }
            return con;
        }
    public DruidPooledConnection getConnection(long maxWaitMillis) throws SQLException {
            // 核心代码1
            init();
    
            if (filters.size() > 0) {
                FilterChainImpl filterChain = new FilterChainImpl(this);
                // 核心代码2
                return filterChain.dataSource_connect(this, maxWaitMillis);
            } else {
                return getConnectionDirect(maxWaitMillis);
            }
        }

    这里的核心代码1也很重要的,这里我们后续再看

    继续看dataSource_connect

    @Override
    public DruidPooledConnection dataSource_connect(DruidDataSource dataSource, long maxWaitMillis) throws SQLException {
        if (this.pos < filterSize) {
            // 核心代码
            DruidPooledConnection conn = nextFilter().dataSource_getConnection(this, dataSource, maxWaitMillis);
            return conn;
        }
    
        return dataSource.getConnectionDirect(maxWaitMillis);
    }

    继续,进入了StatFilter的dataSource_getConnection

    @Override
        public DruidPooledConnection dataSource_getConnection(FilterChain chain, DruidDataSource dataSource,
                                                              long maxWaitMillis) throws SQLException {
            // 核心代码
            DruidPooledConnection conn = chain.dataSource_connect(dataSource, maxWaitMillis);
    
            if (conn != null) {
                conn.setConnectedTimeNano();
    
                StatFilterContext.getInstance().pool_connection_open();
            }
    
            return conn;
        }
    

    继续,然后又回到了FilterChainImpl的dataSource_connect

    @Override
        public DruidPooledConnection dataSource_connect(DruidDataSource dataSource, long maxWaitMillis) throws SQLException {
            if (this.pos < filterSize) {
                DruidPooledConnection conn = nextFilter().dataSource_getConnection(this, dataSource, maxWaitMillis);
                return conn;
            }
    		// 核心代码
            return dataSource.getConnectionDirect(maxWaitMillis);
        }
    

    这个时候走了下面这个方法

    public DruidPooledConnection getConnectionDirect(long maxWaitMillis) throws SQLException {
            int notFullTimeoutRetryCnt = 0;
            for (;;) {
                // handle notFullTimeoutRetry
                DruidPooledConnection poolableConnection;
                try {
                	// 核心代码
                    poolableConnection = getConnectionInternal(maxWaitMillis);
                } catch (GetConnectionTimeoutException ex) {
                    if (notFullTimeoutRetryCnt <= this.notFullTimeoutRetryCount && !isFull()) {
                        notFullTimeoutRetryCnt++;
                        if (LOG.isWarnEnabled()) {
                            LOG.warn("get connection timeout retry : " + notFullTimeoutRetryCnt);
                        }
                        continue;
                    }
                    throw ex;
                }
                ......
     }
      private DruidPooledConnection getConnectionInternal(long maxWait) throws SQLException {
      		DruidConnectionHolder holder;
       		......
       		// 上面做了各种逻辑判断,此处不关注
    
               if (maxWait > 0) {
                   holder = pollLast(nanos);
               } else {
               	// 核心代码1
                   holder = takeLast();
               }
    
               ......
    
            holder.incrementUseCount();
    		// 核心代码2
            DruidPooledConnection poolalbeConnection = new DruidPooledConnection(holder);
            return poolalbeConnection;
        }
    

    核心代码1处获取了一个DruidConnectionHolder,DruidConnectionHolder里面有个关键的成员变量,就是我们的连接Connection

    DruidConnectionHolder takeLast() throws InterruptedException, SQLException {
            try {
                while (poolingCount == 0) {
                    emptySignal(); // send signal to CreateThread create connection
    
                    if (failFast && failContinuous.get()) {
                        throw new DataSourceNotAvailableException(createError);
                    }
    
                    notEmptyWaitThreadCount++;
                    if (notEmptyWaitThreadCount > notEmptyWaitThreadPeak) {
                        notEmptyWaitThreadPeak = notEmptyWaitThreadCount;
                    }
                    try {
                        notEmpty.await(); // signal by recycle or creator
                    } finally {
                        notEmptyWaitThreadCount--;
                    }
                    notEmptyWaitCount++;
    
                    if (!enable) {
                        connectErrorCountUpdater.incrementAndGet(this);
                        throw new DataSourceDisableException();
                    }
                }
            } catch (InterruptedException ie) {
                notEmpty.signal(); // propagate to non-interrupted thread
                notEmptySignalCount++;
                throw ie;
            }
    		// 核心代码1
            decrementPoolingCount();
            // 核心代码2
            DruidConnectionHolder last = connections[poolingCount];
            connections[poolingCount] = null;
    
            return last;
        }

    这里的decrementPoolingCount就是把一个int的变量poolingCount-1,然后在connections数组里面取某一个Connection

    这里就已经看到核心代码了,connections就是我们的线程池了,是一个数组类型,里面存放了我们需要的连接,依靠一个指针poolingCount来控制当前应该可以取哪一个下标的Connection

    查看断点,可以看到里面有8个Connection,也就是我们初始线程池数量

     接下来再看下之前没看的init

    public void init() throws SQLException {
            ......
    			// 核心代码1
                connections = new DruidConnectionHolder[maxActive];
                evictConnections = new DruidConnectionHolder[maxActive];
                keepAliveConnections = new DruidConnectionHolder[maxActive];
    
                SQLException connectError = null;
    
                if (createScheduler != null) {
                    for (int i = 0; i < initialSize; ++i) {
                        createTaskCount++;
                        CreateConnectionTask task = new CreateConnectionTask(true);
                        this.createSchedulerFuture = createScheduler.submit(task);
                    }
                } else if (!asyncInit) {
                    try {
                        // init connections
                        for (int i = 0; i < initialSize; ++i) {
                            // 核心代码2
                            PhysicalConnectionInfo pyConnectInfo = createPhysicalConnection();
                            DruidConnectionHolder holder = new DruidConnectionHolder(this, pyConnectInfo);
                            connections[poolingCount] = holder;
                            incrementPoolingCount();
                        }
    
                        if (poolingCount > 0) {
                            poolingPeak = poolingCount;
                            poolingPeakTime = System.currentTimeMillis();
                        }
                    } catch (SQLException ex) {
                        LOG.error("init datasource error, url: " + this.getUrl(), ex);
                        connectError = ex;
                    }
                }
    
                ......
            }
        }
    

    核心代码1,初始化了一个最大连接数的数组

    核心代码2,初始化初始连接数数量的线程池连接

    到这里,核心代码就全部看完了,本文是从Mybatis查询开始看代码的,实际上核心代码可以直接从DataSource的getConnection方法开始看

    总结

    Druid连接池的核心功能主要就是注册一个DataSource的bean,连接池、获取连接等都依赖于DataSource的实现类DruidDataSourceWrapper,连接池功能主要是维护了一个数组,在项目启动时提前创建了一些数据库连接放到了里面复用

    参考:https://blog.csdn.net/qq_31086797/article/details/114631032

  • 相关阅读:
    重测序(RADseq)做群体遗传分析套路
    BSA分析
    GWAS初探
    GWAS在农业上应用
    【Python小试】计算目录下所有DNA序列的Kmer并过滤
    dict['source'] = list[1],出现这种情况大多是数据的格式发生错误
    First Wainberg-2018-Deep learning in biomedicine Experience
    Second LearningConvolutionalNeuralNetworksforGraphs Experience
    从windows本地IDE启动远程Linux文件进行调试
    xshell的一些基本操作
  • 原文地址:https://www.cnblogs.com/Vincent-yuan/p/15491612.html
Copyright © 2011-2022 走看看