zoukankan      html  css  js  c++  java
  • AOJ/搜索与递归及分治法习题集

    ALDS1_4_A-LinearSearch.
    Description:

    You are given a sequence of n integers S and a sequence of different q integers T. Write a program which outputs C, the number of integers in T which are also in the set S.

    Input:

    In the first line n is given. In the second line, n integers are given. In the third line q is given. Then, in the fourth line, q integers are given.

    Output:

    Print C in a line.

    Constraints:

    n ≤ 10000
    q ≤ 500
    0 ≤ an element in S ≤ 109
    0 ≤ an element in T ≤ 109

    SampleInput1:

    5
    1 2 3 4 5
    3
    3 4 1

    SampleOutput1:

    3

    SampleInput2:

    3
    3 1 2
    1
    5

    SampleOutput2:

    0

    Codes:
    //#define LOCAL
    
    #include <cstdio>
    
    int search(int A[], int n, int key) {
    	int i = 0; A[n] = key;
    	while(A[i] != key) ++i;
    	return i!=n;
    }
    
    int main()
    {
    	#ifdef LOCAL
    		freopen("E:\Temp\input.txt", "r", stdin);
    		freopen("E:\Temp\output.txt", "w", stdout);
    	#endif
    
    	int i, n, q, key, sum = 0, A[10010];
    	scanf("%d", &n);
    	for(i=0; i<n; ++i) scanf("%d", &A[i]);
    	scanf("%d", &q);
    	for(i=0; i<q; ++i) {
    		scanf("%d", &key);
    		if(search(A, n, key)) ++sum;
    	}
    	printf("%d
    ", sum);
    
    
    	return 0;
    }
    

    ALDS1_4_B-BinarySearch.

    Description:

    You are given a sequence of n integers S and a sequence of different q integers T. Write a program which outputs C, the number of integers in T which are also in the set S.

    Input:

    In the first line n is given. In the second line, n integers are given. In the third line q is given. Then, in the fourth line, q integers are given.

    Output:

    Print C in a line.

    Constraints:

    Elements in S is sorted in ascending order
    n ≤ 100000
    q ≤ 50000
    0 ≤ an element in S ≤ 109
    0 ≤ an element in T ≤ 109

    SampleInput1:

    5
    1 2 3 4 5
    3
    3 4 1

    SampleOutput1:

    3

    SampleInput2:

    3
    1 2 3
    1
    5

    SampleOutput2:

    0

    Codes:
    //#define LOCAL
    
    #include <cstdio>
    
    int n, A[1000010];
    
    int binarySearch(int key) {
    	int left = 0, right = n;
    	while(left < right) {
    		int mid = (left+right)/2;
    		if(key > A[mid]) left = mid+1;
    		else if(key == A[mid]) return 1;
    		else right = mid;
    	}
    	return 0;
    }
    
    int main()
    {
    	#ifdef LOCAL
    		freopen("E:\Temp\input.txt", "r", stdin);
    		freopen("E:\Temp\output.txt", "w", stdout);
    	#endif
    
    	int i, q, key, sum = 0;
    	scanf("%d", &n);
    	for(i=0; i<n; ++i) scanf("%d", &A[i]);
    	scanf("%d", &q);
    
    	for(i=0; i<q; ++i) {
    		scanf("%d", &key);
    		if(binarySearch(key)) ++sum;
    	}
    	printf("%d
    ", sum);
    
    	return 0;
    }
    

    ALDS1_4_C-Dictionary.

    Description:

    Your task is to write a program of a simple dictionary which implements the following instructions:

    insert str: insert a string str in to the dictionary
    find str: if the distionary contains str, then print 'yes', otherwise print 'no'

    Input:

    In the first line n, the number of instructions is given. In the following n lines, n instructions are given in the above mentioned format.

    Output:

    Print yes or no for each find instruction in a line.

    Constraints:

    A string consists of 'A', 'C', 'G', or 'T'
    1 ≤ length of a string ≤ 12
    n ≤ 1000000

    SampleInput1:

    5
    insert A
    insert T
    insert C
    find G
    find A

    SampleOutput1:

    no
    yes

    SampleInput2:

    13
    insert AAA
    insert AAC
    insert AGA
    insert AGG
    insert TTT
    find AAA
    find CCC
    find CCC
    insert CCC
    find CCC
    insert T
    find TTT
    find T

    SampleOutput2:

    yes
    no
    no
    yes
    yes
    yes

    Codes:
    //#define LOCAL
    
    #include <cstdio>
    #include <cstring>
    
    #define M 1046527
    #define NIL (-1)
    #define L 14
    char H[M][L];
    
    int getChar(char ch) {
    	if(ch == 'A') return 1;
    	else if(ch == 'C') return 2;
    	else if(ch == 'G') return 3;
    	else if(ch == 'T') return 4;
    	else return 0;
    }
    
    long long getKey(char str[]) {
    	int len = strlen(str);
    	long long sum = 0, p = 1, i;
    	for(i=0; i<len; ++i) {
    		sum += p*(getChar(str[i]));
    		p *= 5;
    	}
    	return sum;
    }
    
    int h1(int key) {return key%M;}
    int h2(int key) {return 1+(key%(M-1));}
    
    int find(char str[]) {
    	long long key, i, h;
    	key = getKey(str);
    	for(i=0; ; ++i) {
    		h = (h1(key)+i*h2(key))%M;
    		if(strcmp(H[h], str) == 0) return 1;
    		else if(strlen(H[h]) == 0) return 0;
    	}
    	return 0;
    }
    
    int insert(char str[]) {
    	long long key, i, h;
    	key = getKey(str);
    	for(i=0; ; ++i) {
    		h = (h1(key)+i*h2(key))%M;
    		if(strcmp(H[h], str) == 0) return 1;
    		else if(strlen(H[h]) == 0) {
    			strcpy(H[h], str);
    			return 0;
    		}
    	}
    	return 0;
    }
    
    int main()
    {
    	#ifdef LOCAL
    		freopen("E:\Temp\input.txt", "r", stdin);
    		freopen("E:\Temp\output.txt", "w", stdout);
    	#endif
    
    	int i, n, h;
    	char str[L], com[9];
    	for(i=0; i<M; ++i) H[i][0] = '';
    	scanf("%d", &n);
    	
    	for(i=0; i<n; ++i) {
    		scanf("%s %s", com, str);
    		if(com[0] == 'i') insert(str);
    		else {
    			if(find(str)) printf("yes
    ");
    			else printf("no
    ");
    		}
    	}
    
    	return 0;
    }
    

    ALDS1_4_D-Allocation.

    Codes:
    #include <iostream>
    using namespace std;
    
    #define MAX 100000
    typedef long long llong;
    int n, k; llong T[MAX];
    
    int check(llong P) {
    	int i = 0;
    	for(int j=0; j<k; ++j) {
    		llong s = 0;
    		while(s+T[i] <= P) {
    			s += T[i++];
    			if(i == n) return n;
    		}
    	}
    	return i;
    }
    
    int solve() {
    	llong mid, left = 0, right = 1000000000;
    	while(right-left > 1) {
    		mid = (left+right)/2;
    		int v = check(mid);
    		if(v >= n) right = mid;
    		else left = mid;
    	}
    	return right;
    }
    
    int main()
    {
    	cin >> n >> k;
    	for(int i=0; i<n; ++i) cin >> T[i];
    	cout << solve() << endl;
    }
    

    ALDS1_5_A-ExhaustiveSearch.

    Description:

    Write a program which reads a sequence A of n elements and an integer M, and outputs "yes" if you can make M by adding elements in A, otherwise "no". You can use an element only once.

    You are given the sequence A and q questions where each question contains Mi.

    Input:

    In the first line n is given. In the second line, n integers are given. In the third line q is given. Then, in the fourth line, q integers (Mi) are given.

    Output:

    For each question Mi, print yes or no.

    Constraints:

    n ≤ 20
    q ≤ 200
    1 ≤ elements in A ≤ 2000
    1 ≤ Mi ≤ 2000

    SampleInput:

    5
    1 5 7 10 21
    8
    2 4 17 8 22 21 100 35

    SampleOutput:

    no
    no
    yes
    yes
    yes
    yes
    no
    no

    Codes:
    //#define LOCAL
    
    #include <cstdio>
    
    int n, A[50];
    
    int solve(int i, int k) {
    	if(!k) return 1;
    	if(i >= n) return 0;
    	return solve(i+1, k)||solve(i+1, k-A[i]);
    }
    
    int main()
    {
    	#ifdef LOCAL
    		freopen("E:\Temp\input.txt", "r", stdin);
    		freopen("E:\Temp\output.txt", "w", stdout);
    	#endif
    
    	int i, q, k;
    	scanf("%d", &n);
    	for(i=0; i<n; ++i) scanf("%d", &A[i]);
    	scanf("%d", &q);
    
    	for(i=0; i<q; ++i) {
    		scanf("%d", &k);
    		if(solve(0, k)) printf("yes
    ");
    		else printf("no
    ");
    	}
    
    	return 0;
    }
    

    ALDS1_5_C-KochCurve.

    Description:

    Write a program which reads an integer n and draws a Koch curve based on recursive calles of depth n.

    The Koch curve is well known as a kind of fractals.

    You can draw a Koch curve in the following algorithm:

    Divide a given segment (p1, p2) into three equal segments.
    Replace the middle segment by the two sides of an equilateral triangle (s, u, t) of the same length as the segment.
    Repeat this procedure recursively for new segments (p1, s), (s, u), (u, t), (t, p2).

    You should start (0, 0), (100, 0) as the first segment.

    Input:

    An integer n is given.

    Output:

    Print each point (x, y) of the Koch curve. Print a point in a line. You should start the point(0, 0), which is the endpoint of the first segment and end with the point (100, 0), the other endpoint so that you can draw the Koch curve as an unbroken line. Each solution should be given as a decimal with an arbitrary number of fractional digits, and with an absolute error of at most 10-4.

    Constraints:

    0 ≤ n ≤ 6

    SampleInput1:

    1

    SampleOutput1:

    0.00000000 0.00000000
    33.33333333 0.00000000
    50.00000000 28.86751346
    66.66666667 0.00000000
    100.00000000 0.00000000

    SampleInput2:

    2

    SampleOutput2:

    0.00000000 0.00000000
    11.11111111 0.00000000
    16.66666667 9.62250449
    22.22222222 0.00000000
    33.33333333 0.00000000
    38.88888889 9.62250449
    33.33333333 19.24500897
    44.44444444 19.24500897
    50.00000000 28.86751346
    55.55555556 19.24500897
    66.66666667 19.24500897
    61.11111111 9.62250449
    66.66666667 0.00000000
    77.77777778 0.00000000
    83.33333333 9.62250449
    88.88888889 0.00000000
    100.00000000 0.00000000

    Codes:
    //#define LOCAL
    
    #include <cstdio>
    #include <cmath>
    
    struct Point{ double x, y;};
    
    void koch(int n, Point a, Point b) {
    	if(!n) return ;
    
    	Point s, t, u;
    	double th = M_PI*60.0/180.0;
    
    	s.x = (2.0*a.x+1.0*b.x)/3.0;
    	s.y = (2.0*a.y+1.0*b.y)/3.0;
    	t.x = (1.0*a.x+2.0*b.x)/3.0;
    	t.y = (1.0*a.y+2.0*b.y)/3.0;
    	u.x = (t.x-s.x)*cos(th)-(t.y-s.y)*sin(th)+s.x;
    	u.y = (t.x-s.x)*sin(th)+(t.y-s.y)*cos(th)+s.y;
    
    	koch(n-1, a, s);
    	printf("%.8f %.8f
    ", s.x, s.y);
    	koch(n-1, s, u);
    	printf("%.8f %.8f
    ", u.x, u.y);
    	koch(n-1, u, t);
    	printf("%.8f %.8f
    ", t.x, t.y);
    	koch(n-1, t, b);
    }
    
    int main()
    {
    	#ifdef LOCAL
    		freopen("E:\Temp\input.txt", "r", stdin);
    		freopen("E:\Temp\output.txt", "w", stdout);
    	#endif
    
    	int n; Point a, b;
    	scanf("%d", &n);
    	a.x = 0, a.y = 0, b.x = 100, b.y = 0;
    
    	printf("%.8f %.8f
    ", a.x, a.y);
    	koch(n, a, b);
    	printf("%.8f %.8f
    ", b.x, b.y);
    
    	return 0;
    }
  • 相关阅读:
    【Luogu】P3381最小费用最大流模板(SPFA找增广路)
    【Luogu】P1393动态逆序对(树套树)
    【Luogu】P2617Dynamic Ranking(树状数组套主席树)
    【Luogu】P2953牛的数字游戏(博弈论)
    【Luogu】P2530化工厂装箱员(DP)
    【Luogu】P3856公共子串(DP)
    【Luogu】P3847调整队形(DP)
    【Luogu】P3567Kur-Couriers(主席树)
    【Luogu】P3758可乐(矩阵优化DP)
    【Luogu】P1131时态同步(树形DP)
  • 原文地址:https://www.cnblogs.com/VincentValentine/p/6786513.html
Copyright © 2011-2022 走看看