Description
(n(nleq10^5))个点构成的有向图,有(m(mleq10^5))条连通信息,信息有三种:
1 u v w
,表示存在一条边权为(w)的有向边((u,v));2 u L R w
,表示(forall vin[L,R]),存在一条边权为(w)的有向边((u,v));3 u L R w
,表示(forall vin[L,R]),存在一条边权为(w)的有向边((v,u))。
其中(wleq10^9)。求点(s)到每个点的最短路,不存在输出(-1)。
Solution
线段树优化建图。
建立两棵线段树,其上点的点权分别表示“到达这个区间内所有点的最小花费”和“到达这个区间内任意一个点的最小花费”。
第一棵线段树上,由于花费(v_{[L,R]})能够到达([L,R])中所有点,当然也包含([L,mid])和([mid+1,R]),所以父节点向子节点连0边;第二棵线段树上,由于花费(v_{[L,R]})能够到达([L,R])中的一个点,这个点当然也包含在其父节点中,所以子节点向父节点连0边。
如果不做感性理解的话,两棵线段树上的点分别用于连和被连,连向第一棵树上的([L,R])就等价于连向([L,R])中的每一个点,被第二棵树上的([L,R])连就等价于被([L,R])中的每一个点连。
由于每一条信息最多建立(O(logn))条边,所以总边数是(O(mlogn+4n))。
建完图后直接跑一遍单源最短路就好啦。
Code
//Legacy
#include <cstdio>
#include <cstring>
#include <queue>
typedef long long lint;
inline char gc()
{
static char now[1<<16],*s,*t;
if(s==t) {t=(s=now)+fread(now,1,1<<16,stdin); if(s==t) return EOF;}
return *s++;
}
inline int read()
{
int x=0; char ch=gc();
while(ch<'0'||'9'<ch) ch=gc();
while('0'<=ch&&ch<='9') x=x*10+ch-'0',ch=gc();
return x;
}
inline int min(int x,int y) {return x<y?x:y;}
const int N=1e5+10;
int n,m,s;
const int N1=3e5+110;
int cnt,rt1,rt2,ch[N1][2];
int h[N1],edCnt;
struct edge{int v,w,nxt;} ed[N*20];
inline void edAdd(int u,int v,int w)
{
edCnt++; ed[edCnt].v=v,ed[edCnt].w=w;
ed[edCnt].nxt=h[u],h[u]=edCnt;
}
void bldTr1(int &p,int L0,int R0)
{
if(L0==R0) {p=L0; return;}
p=++cnt;
int mid=L0+R0>>1;
bldTr1(ch[p][0],L0,mid);
bldTr1(ch[p][1],mid+1,R0);
edAdd(p,ch[p][0],0),edAdd(p,ch[p][1],0);
}
void bldTr2(int &p,int L0,int R0)
{
if(L0==R0) {p=L0; return;}
p=++cnt;
int mid=L0+R0>>1;
bldTr2(ch[p][0],L0,mid);
bldTr2(ch[p][1],mid+1,R0);
edAdd(ch[p][0],p,0),edAdd(ch[p][1],p,0);
}
int optL,optR;
void add(int p,int L0,int R0,int u,int w,int type)
{
if(optL<=L0&&R0<=optR)
{
if(type==2) edAdd(u,p,w); else edAdd(p,u,w);
return;
}
int mid=L0+R0>>1;
if(optL<=mid) add(ch[p][0],L0,mid,u,w,type);
if(mid<optR) add(ch[p][1],mid+1,R0,u,w,type);
}
const lint INF=0x3F3F3F3F3F3F3F3F;
lint dst[N1];
std::queue<int> Q;
void SPFA(int s)
{
memset(dst,0x3F,sizeof dst);
dst[s]=0; Q.push(s);
while(!Q.empty())
{
int u=Q.front(); Q.pop();
for(int i=h[u];i;i=ed[i].nxt)
{
int v=ed[i].v,w=ed[i].w;
if(dst[u]+w<dst[v]) dst[v]=dst[u]+w,Q.push(v);
}
}
}
int main()
{
n=read(),m=read(),s=read();
cnt=n;
bldTr1(rt1,1,n); bldTr2(rt2,1,n);
while(m--)
{
int opt=read(),u,v,w;
if(opt==1)
{
u=read(),v=read(),w=read();
edAdd(u,v,w); continue;
}
u=read(); optL=read(),optR=read(); w=read();
add(opt==2?rt1:rt2,1,n,u,w,opt);
}
SPFA(s);
for(int i=1;i<=n;i++) printf("%lld ",dst[i]<INF?dst[i]:-1);
puts("");
return 0;
}