zoukankan      html  css  js  c++  java
  • Poj 3977 Subset

    题目

    Given a list of N integers with absolute values no larger than 10 15, find a non empty subset of these numbers which minimizes the absolute value of the sum of its elements. In case there are multiple subsets, choose the one with fewer elements.

    Input

    The input contains multiple data sets, the first line of each data set contains N <= 35, the number of elements, the next line contains N numbers no larger than 10 15 in absolute value and separated by a single space. The input is terminated with N = 0

    Output

    For each data set in the input print two integers, the minimum absolute sum and the number of elements in the optimal subset.

    Sample Input

    1
    10
    3
    20 100 -100
    0

    Sample Output

    10 1
    0 2

    分析

    每个x找另一个集合的-x,如果不存在-x,就看这个数前一个后一个,跟他和的绝对值 
    map也可以low_bound,学习下pair, 这题map特别好用,相等的sum,直接存最小的num就好了

    两个集合都从状态1开始枚举, 防止两个集合同时没拿集合,每个集合都从1开始,同时把每个集合单个集合最小的更新到答案里,这样保证了一种集合不拿另一种集合拿的正确性, 另一个集合同理, 其余的就都是两个集合拿东西了。
    如果这个数没有,或者他不是最小的

    代码

    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <map>
    #include <algorithm>
    using namespace std;
    typedef long long ll;
    const int maxn = 40;
    const ll INF = 1e18;
    ll ABS(ll x){
        if(x >= 0) return x;
        else return -x;
    }
    map<ll, int> mp;
    ll a[maxn];
    int main(){
        int n;
        while(~scanf("%d", &n), n){
            mp.clear();
            for(int i = 0; i < n; i++)
                scanf("%lld", &a[i]);
            pair<ll, int> ans = make_pair(INF, 0);
            int len1 = n/2, len2 = n-len1;
            for(int i = 1; i < 1<<len1; i++){
                ll sum = 0;
                int num = 0;
                for(int j = 0; j < len1; j++)
                    if(i&(1<<j))
                        sum += a[j], num++;
                if(!mp[sum] || mp[sum] > num)
                    mp[sum] = num;
                pair<ll, int> t = make_pair(ABS(sum), num);
                if (t < ans) ans = t;
            }
            for(int i = 1; i < 1<<len2; i++){
                ll sum = 0;
                int num = 0;
                for(int j = 0; j < len2; j++)
                    if(i&(1<<j))
                        sum += a[len1+j], num++;
                pair<ll, int> t = make_pair(ABS(sum), num);
                    if (t < ans) ans = t;
                map<ll, int>::iterator it = mp.lower_bound(-sum);
                if(it != mp.end()){
                    t = make_pair(ABS(it->first + sum), num + it->second);
                    if (t < ans) ans = t;
                }
                if(it != mp.begin()){
                    it--;
                    t = make_pair(ABS(it->first + sum), num + it->second);
                    if (t < ans) ans = t;
                }
            }
            printf("%lld %d",ans.first,ans.second);
        }
        return 0;
    }
  • 相关阅读:
    经管-7
    均衡价格和均衡产量以及偏分求导
    点弹性系数计算
    洛谷-P5703 【深基2.例5】苹果采购
    洛谷-P1616 疯狂的采药
    洛谷-P1049 装箱问题
    洛谷-P1048 采药
    洛谷-P1064 金明的预算方案
    操作系统启动
    mybatis中使用注解查询和使用xml配置文件查询相互对应关系
  • 原文地址:https://www.cnblogs.com/Vocanda/p/12780789.html
Copyright © 2011-2022 走看看