zoukankan      html  css  js  c++  java
  • Codeforces632E Thief in a Shop(NTT + 快速幂)

    题目

    Source

    http://codeforces.com/contest/632/problem/E

    Description

    A thief made his way to a shop.

    As usual he has his lucky knapsack with him. The knapsack can contain k objects. There are n kinds of products in the shop and an infinite number of products of each kind. The cost of one product of kind i is ai.

    The thief is greedy, so he will take exactly k products (it's possible for some kinds to take several products of that kind).

    Find all the possible total costs of products the thief can nick into his knapsack.

    Input

    The first line contains two integers n and k (1 ≤ n, k ≤ 1000) — the number of kinds of products and the number of products the thief will take.

    The second line contains n integers ai (1 ≤ ai ≤ 1000) — the costs of products for kinds from 1 to n.

    Output

    Print the only line with all the possible total costs of stolen products, separated by a space. The numbers should be printed in the ascending order.

    Sample Input

    3 2
    1 2 3

    5 5
    1 1 1 1 1

    3 3
    3 5 11

    Sample Output

    2 3 4 5 6
    5
    9 11 13 15 17 19 21 25 27 33

    分析

    题目大概说给有n种价值各一的物品,每种数量都无限多,问取出k个物品能取出的物品价值和的所有情况。

    用母函数解,价值为指数、存不存在为系数,构造多项式求k次幂即可。
    这自然想到FFT+快速幂求,这样时间复杂度才够。


    FFT直接求的话结果的系数最大到达10001000太爆炸了,当然也可以求一次卷积后非0指数重新赋值成1;不过我想着开头一次DFT结尾一次IDFT这样更快、更轻松点,所以用NTT了。。


    我NTT模数取1004535809 WA在20,取998244353 WA在21。。看样子是系数取模后变为0了,数据叼叼的。。于是我就两个模数都取,然后4000多ms险过了。。

    代码

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    #define MAXN 1048576
     
    //const long long P=50000000001507329LL; // 190734863287 * 2 ^ 18 + 1
    long long P=1004535809; // 479 * 2 ^ 21 + 1
    //const long long P=998244353; // 119 * 2 ^ 23 + 1
    const int G=3;
     
    long long mul(long long x,long long y){
    	return (x*y-(long long)(x/(long double)P*y+1e-3)*P+P)%P;
    }
    long long qpow(long long x,long long k,long long p){
    	long long ret=1;
    	while(k){
    		if(k&1) ret=mul(ret,x);
    		k>>=1;
    		x=mul(x,x);
    	}
    	return ret;
    }
     
    long long wn[25];
    void getwn(){
    	for(int i=1; i<=21; ++i){
    		int t=1<<i;
    		wn[i]=qpow(G,(P-1)/t,P);
    	}
    }
     
    int len;
    void NTT(long long y[],int op){
    	for(int i=1,j=len>>1,k; i<len-1; ++i){
    		if(i<j) swap(y[i],y[j]);
    		k=len>>1;
    		while(j>=k){
    			j-=k;
    			k>>=1;
    		}
    		if(j<k) j+=k;
    	}
    	int id=0;
    	for(int h=2; h<=len; h<<=1) {
    		++id;
    		for(int i=0; i<len; i+=h){
    			long long w=1;
    			for(int j=i; j<i+(h>>1); ++j){
    				long long u=y[j],t=mul(y[j+h/2],w);
    				y[j]=u+t;
    				if(y[j]>=P) y[j]-=P;
    				y[j+h/2]=u-t+P;
    				if(y[j+h/2]>=P) y[j+h/2]-=P;
    				w=mul(w,wn[id]);
    			}
    		}
        }
        if(op==-1){
    		for(int i=1; i<len/2; ++i) swap(y[i],y[len-i]);
    		long long inv=qpow(len,P-2,P);
    		for(int i=0; i<len; ++i) y[i]=mul(y[i],inv);
        }
    }
    void Convolution(long long A[],long long B[],int n){
    	for(len=1; len<(n<<1); len<<=1);
    	for(int i=n; i<len; ++i){
    		A[i]=B[i]=0;
    	}
    	
    	NTT(A,1); NTT(B,1);
    	for(int i=0; i<len; ++i){
    		A[i]=mul(A[i],B[i]);
    	}
    	NTT(A,-1);
    }
     
    long long A[MAXN],B[MAXN],C[MAXN];
    long long cnt[MAXN];
    
    int main(){
    	getwn();
    	int n,k,a;
    	scanf("%d%d",&n,&k);
    	int mx=0;
    	for(int i=0; i<n; ++i){
    		scanf("%d",&a);
    		++cnt[a];
    		mx=max(mx,a);
    	}
    	for(len=1; len<mx*k; len<<=1);
    	
    	memcpy(A,cnt,sizeof(cnt));
    	NTT(A,1);
    	memcpy(B,A,sizeof(B));
    	--k;
    	int tmp=k;
    	while(k){
    		if(k&1){
    			for(int i=0; i<len; ++i) B[i]=mul(A[i],B[i]);
    		}
    		for(int i=0; i<len; ++i) A[i]=mul(A[i],A[i]);
    		k>>=1;
    	}
    	NTT(B,-1);
    	
    	P=998244353;
    	getwn();
    	memcpy(A,cnt,sizeof(cnt));
    	NTT(A,1);
    	memcpy(C,A,sizeof(C));
    	k=tmp;
    	while(k){
    		if(k&1){
    			for(int i=0; i<len; ++i) C[i]=mul(A[i],C[i]);
    		}
    		for(int i=0; i<len; ++i) A[i]=mul(A[i],A[i]);
    		k>>=1;
    	}
    	NTT(C,-1);
    	
    	for(int i=0; i<len; ++i){
    		if(B[i] || C[i]) printf("%d ",i);
    	}
    	return 0;
    }
    
  • 相关阅读:
    动画组(花瓣)以曲线落下
    关键帧动画(2)花瓣
    关键帧动画(2)心脏的跳动
    基础动画(落叶)
    核心动画3
    手表(锚点)
    利用高德地图完成用户地图选址,包括搜索位置和标签固定居中
    控件利用Masonry添加约束之后 不能立刻获取到该控件的尺寸
    添加textView的时候注意在导航控制器下的文字内容位置偏移
    当xib没有与对应的控制器连线的时候导致的崩溃
  • 原文地址:https://www.cnblogs.com/WABoss/p/5915285.html
Copyright © 2011-2022 走看看