zoukankan      html  css  js  c++  java
  • [WebGL]二维变换

    1 变换矩阵

    平移矩阵

    [egin{bmatrix} 1 & 0 & t_x\ 0 & 1 & t_y\ 0 & 0 & 1\ end{bmatrix} egin{bmatrix} x \ y \ 1 \ end{bmatrix} = egin{bmatrix} x +t_x\ y +t_y\ 1 \ end{bmatrix} ]

    缩放矩阵

    [egin{bmatrix} s_x & 0 & 1\ 0 & s_y & 1\ 0 & 0 & 1\ end{bmatrix} egin{bmatrix} x \ y \ 1 \ end{bmatrix} = egin{bmatrix} s_xx \ s_yy \ 1 \ end{bmatrix} ]

    旋转矩阵

    [egin{bmatrix} cos heta & -sin heta & 0\ sin heta & cos heta & 0\ 0 & 0 & 1\ end{bmatrix} egin{bmatrix} x \ y \ 1 \ end{bmatrix} = egin{bmatrix} xcos heta -ysin heta\ xsin heta +ycos heta\ 1 \ end{bmatrix} ]

    平移和缩放都很好理解,旋转矩阵可能要稍微推到一下,这里用到两角和差公式,如下:

    [sin(alphapm heta) = sinalpha cos heta pm cosalpha sin heta \ cos(alphapm heta) = cosalpha cos heta mp sinalpha sin heta ]

    P是旋转变换前的点,P'是旋转变换后的点,P与坐标轴的夹角为(alpha),P'与P的夹角为( heta),已知P的坐标和旋转的角度( heta)

    因为旋转前后P和原点的距离没有变化,所以设为( ho),则有

    [ hocos(alpha+ heta) = x^{'}\ hosin(alpha+ heta) = y^{'}\ hocosalpha = x\ hosinalpha = y\ ]

    利用两角和公式,即可得到

    [xcos heta -ysin heta = x^{'}\ xsin heta +ycos heta = y^{'}\ ]

    上述的缩放也好,旋转也好都是相对于原点的,如果想相对于某个点进行缩放或者旋转,可以先把参考点平移至远点,然后再进行缩放或者旋转,完毕后,再平移回去。例如在坐标系中有一个矩形,我们想相对于它的中心进行缩放,和旋转,那么将其中心点平移至远点,然后进行缩放,然后再平移回去。
    (M_{composition} = A_{moveBack}A_{rotate}A_{scale}A_{moveToOrigin}P_{rect})

    2 在WebGL中如何操作

    在vertex shader中,对传入的顶点数据进行变换(乘变换矩阵),并赋给gl_Position

    attribute vec2 a_position;
     
    uniform mat3 u_matrix;//预先在js中计算出变换矩阵,然后传入shader中
     
    void main() {
      // 使位置和矩阵相乘
      gl_Position = vec4((u_matrix * vec3(a_position, 1)).xy, 0, 1);
    }
    

    例如2D的投影矩阵,将像素空间转换为裁剪空间。像素空间默认的是原点在左上角,y轴朝下,坐标范围为[0,width],[0,height],而裁剪空间的原点在中心,y轴朝上,范围为[-1,1]。把在像素空间中定义的点,转换到裁剪空间中。

    1. 将像素坐标缩放到[0,1]
    2. 缩放到[0,2]
    3. 坐标-1,变换为[-1,1]
    4. 将y轴翻转

    用变换矩阵来表示,就是

    [M_{projection}= egin{bmatrix} 1 & 0 & 0\ 0 & -1 & 0\ 0 & 0 & 1\ end{bmatrix} egin{bmatrix} 1 & 0 & -1\ 0 & 1 & -1\ 0 & 0 & 1\ end{bmatrix} egin{bmatrix} 2 & 0 & 0\ 0 & 2 & 0\ 0 & 0 & 1\ end{bmatrix} egin{bmatrix} frac{1}{width} & 0 & 0\ 0 & frac{1}{height} & 0\ 0 & 0 & 1\ end{bmatrix} = egin{bmatrix} frac{2}{width} & 0 & -1\ 0 & frac{-2}{height} & 1\ 0 & 0 & 1\ end{bmatrix} ]

    所以在做变换的时候,可以基于像素坐标进行变换,最后再乘上投影矩阵,将像素空间变换到裁剪空间

  • 相关阅读:
    九宫格代码
    数组相关
    动画设置模式大全
    extjs 学习小窍门
    linux mysql root密码重置
    (ExtJs 3.4)Ext.Ajax.request的同步请求实现
    Ext中renderer用法及参数
    Extjs 3.4 复选框的,默认选中 ,禁用,(纯属于自己代码中需要,总结!)
    linux部署安装nginx
    报表报500,tomcat日志显示报错:Can't connect to X11 window server using 'localhost:10.0' as the value of the DISPLAY variable
  • 原文地址:https://www.cnblogs.com/WAoyu/p/13038108.html
Copyright © 2011-2022 走看看