**链接:****传送门 **
题意:给出二维坐标轴上 n 个点,这 n 个点构成了一个城堡,国王想建一堵墙,城墙与城堡之间的距离总不小于一个数 L ,求城墙的最小长度,答案四舍五入
思路:城墙与城堡直线长度是相等的,当城堡出现拐角时,城墙必然会出现一段圆弧,这些圆弧最终会构成一个半径为 L 的圆,所以答案就是凸包的周长 + 圆的周长
balabala:
- 采用Jarvis步进法来求凸包,Jarvis步进法复杂度为O(nh),h为凸包顶点个数
- 采用Graham-Scan来求凸包,Graham - Scan 法复杂度为O(nlogn)
如有错误请一定指出!
Graham - Scan法:
/*************************************************************************
> File Name: hdu1348t2.cpp
> Author: WArobot
> Blog: http://www.cnblogs.com/WArobot/
> Created Time: 2017年05月07日 星期日 20时49分15秒
************************************************************************/
#include<bits/stdc++.h>
using namespace std;
// Graham - Scan
// O(nlgn)
#define PI 3.1415926535
const int maxn = 1010;
struct point{
double x,y;
};
bool cmp(point a,point b){
return (a.y<b.y || (a.y==b.y && a.x<b.x));
}
bool mult(point sp,point ep,point op){
return (sp.x-op.x)*(ep.y-op.y)>=(sp.y-op.y)*(ep.x-op.x);
}
point res[maxn];
int Graham(point pnt[],int n){
int i , len , k = 0 , top = 1;
sort(pnt,pnt+n,cmp);
if(n == 0) return 0; res[0] = pnt[0];
if(n == 1) return 1; res[1] = pnt[1];
if(n == 2) return 2; res[2] = pnt[2];
for(int i=2;i<n;i++){
while( top && mult( pnt[i] , res[top] , res[top-1] ))
top--;
res[++top] = pnt[i];
}
len = top; res[++top] = pnt[n-2];
for(i=n-3;i>=0;i--){
while( top!=len && mult( pnt[i] , res[top] , res[top-1] ))
top--;
res[++top] = pnt[i];
}
return top;
}
double point_dis(point a,point b){
return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
}
int main(){
int T , n , L , kase = 0;
point pi[maxn];
scanf("%d",&T);
while(T--){
if(kase > 0) printf("
");
kase++;
scanf("%d%d",&n,&L);
for(int i=0;i<n;i++) scanf("%lf%lf",&pi[i].x,&pi[i].y);
int t = Graham(pi,n);
double ans = 2*PI*L;
for(int i=0;i<t;i++){
ans += point_dis( res[i] , res[ (i+1)%t ] );
}
printf("%.lf
",ans);
}
return 0;
}
Jarvis步进法:
/*************************************************************************
> File Name: hdu1348.cpp
> Author: WArobot
> Blog: http://www.cnblogs.com/WArobot/
> Created Time: 2017年05月07日 星期日 18时55分57秒
************************************************************************/
#include<bits/stdc++.h>
using namespace std;
#define PI 3.1415926535
const int maxn = 1010;
struct point{
double x,y;
}pi[maxn];
bool cmp(point a,point b){
return ( a.y<b.y || a.y==b.y && a.x<b.x);
}
int n,L,ans[maxn],cnt,sta[maxn],tail;
// 检查是否严格左转,共线不算左转
bool CrossLeft(point p1,point p2,point p3){
return ((p3.x-p1.x)*(p2.y-p1.y) - (p2.x-p1.x)*(p3.y-p1.y)) < 0;
}
void Jarvis(){
tail = cnt = 0;
sort(pi,pi+n,cmp);
sta[tail++] = 0; sta[tail++] = 1;
for(int i=2;i<n;i++){
while(tail>1 && !CrossLeft( pi[ sta[tail-1] ] , pi[ sta[tail-2] ] , pi[i] ))
tail--;
sta[ tail++ ] = i;
}
for(int i=0;i<tail;i++) ans[cnt++] = sta[i];
tail = 0; sta[ tail++ ] = n-1; sta[ tail++ ] = n-2;
for(int i=n-3;i>=0;i--){
while(tail>1 && !CrossLeft( pi[ sta[tail-1] ] , pi[ sta[tail-2] ] , pi[i] ))
tail--;
sta[ tail++ ] = i;
}
for(int i=0;i<tail;i++) ans[cnt++] = sta[i];
}
double Point_dis(point a,point b){
return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
}
int main(){
int T , kase = 0;
scanf("%d",&T);
while(T--){
if(kase) printf("
");
kase++;
scanf("%d%d",&n,&L);
for(int i=0;i<n;i++) scanf("%lf%lf",&pi[i].x,&pi[i].y);
Jarvis();
double re = 2*PI*L;
for(int i=0;i<cnt-1;i++){
re += Point_dis( pi[ans[i]] , pi[ans[i+1]] );
}
printf("%.0lf
",re);
}
return 0;
}