题目
1652: [Usaco2006 Feb]Treats for the Cows
Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 234 Solved: 185
[Submit][Status]
Description
FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time. The treats are interesting for many reasons: * The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats. * Like fine wines and delicious cheeses, the treats improve with age and command greater prices. * The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000). * Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a. Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally? The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.
约翰经常给产奶量高的奶牛发特殊津贴,于是很快奶牛们拥有了大笔不知该怎么花的钱.为此,约翰购置了N(1≤N≤2000)份美味的零食来卖给奶牛们.每天约翰售出一份零食.当然约翰希望这些零食全部售出后能得到最大的收益.这些零食有以下这些有趣的特性:
Input
* Line 1: A single integer,
N * Lines 2..N+1: Line i+1 contains the value of treat v(i)
Output
* Line 1: The maximum revenue FJ can achieve by selling the treats
Sample Input
1
3
1
5
2
Five treats. On the first day FJ can sell either treat #1 (value 1) or
treat #5 (value 2).
Sample Output
OUTPUT DETAILS:
FJ sells the treats (values 1, 3, 1, 5, 2) in the following order
of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.
题解
这道题用区间DP,f[i][j]表示最后i-j+1天卖i~j的商品的最大收益。转移见代码。
代码
1 /*Author:WNJXYK*/ 2 #include<cstdio> 3 using namespace std; 4 5 #define LL long long 6 #define Inf 2147483647 7 #define InfL 10000000000LL 8 9 inline int abs(int x){if (x<0) return -x;return x;} 10 inline int abs(LL x){if (x<0) return -x;return x;} 11 inline void swap(int &x,int &y){int tmp=x;x=y;y=tmp;} 12 inline void swap(LL &x,LL &y){LL tmp=x;x=y;y=tmp;} 13 inline int remin(int a,int b){if (a<b) return a;return b;} 14 inline int remax(int a,int b){if (a>b) return a;return b;} 15 inline LL remin(LL a,LL b){if (a<b) return a;return b;} 16 inline LL remax(LL a,LL b){if (a>b) return a;return b;} 17 inline void read(int &x){x=0;int f=1;char ch=getchar();while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}x=x*f;} 18 inline void read(LL &x){x=0;LL f=1;char ch=getchar();while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}x=x*f;} 19 inline void read(int &x,int &y){read(x);read(y);} 20 inline void read(LL &x,LL &y){read(x);read(y);} 21 inline void read(int &x,int &y,int &z){read(x,y);read(z);} 22 inline void read(int &x,int &y,int &n,int &m){read(x,y);read(n,m);} 23 inline void read(LL &x,LL &y,LL &z){read(x,y);read(z);} 24 inline void read(LL &x,LL &y,LL &n,LL &m){read(x,y);read(n,m);} 25 26 const int Maxn=2000; 27 int n,v[Maxn+10]; 28 int f[Maxn+5][Maxn+5]; 29 int main(){ 30 read(n); 31 for (int i=1;i<=n;i++) read(v[i]); 32 for (int i=1;i<=n;i++) 33 f[i][i]=v[i]*n; 34 for (int k=1;k<n;k++){ 35 for (int i=1;i<=n-k;i++){ 36 int j=i+k; 37 f[i][j]=remax(v[i]*(n-k)+f[i+1][j],v[j]*(n-k)+f[i][j-1]); 38 } 39 } 40 printf("%d ",f[1][n]); 41 return 0; 42 }