zoukankan      html  css  js  c++  java
  • GCD HDU

    GCD

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 17385    Accepted Submission(s): 6699


    Problem Description
    Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
    Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

    Yoiu can assume that a = c = 1 in all test cases.
     
    Input
    The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
    Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
     
    Output
    For each test case, print the number of choices. Use the format in the example.
     
    Sample Input
    2 1 3 1 5 1 1 11014 1 14409 9
     
    Sample Output
    Case 1: 9 Case 2: 736427
    Hint
    For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
     
    Source
     
    就是求 [1, b / k]  和 [1, d / k] 互质数的对数
     先用欧拉函数求出 相同区间的互质的对数 多出来的 用容斥去求
    #include <iostream>
    #include <cstdio>
    #include <sstream>
    #include <cstring>
    #include <map>
    #include <cctype>
    #include <set>
    #include <vector>
    #include <stack>
    #include <queue>
    #include <algorithm>
    #include <cmath>
    #include <bitset>
    #define rap(i, a, n) for(int i=a; i<=n; i++)
    #define rep(i, a, n) for(int i=a; i<n; i++)
    #define lap(i, a, n) for(int i=n; i>=a; i--)
    #define lep(i, a, n) for(int i=n; i>a; i--)
    #define rd(a) scanf("%d", &a)
    #define rlld(a) scanf("%lld", &a)
    #define rc(a) scanf("%c", &a)
    #define rs(a) scanf("%s", a)
    #define rb(a) scanf("%lf", &a)
    #define rf(a) scanf("%f", &a)
    #define pd(a) printf("%d
    ", a)
    #define plld(a) printf("%lld
    ", a)
    #define pc(a) printf("%c
    ", a)
    #define ps(a) printf("%s
    ", a)
    #define MOD 2018
    #define LL long long
    #define ULL unsigned long long
    #define Pair pair<int, int>
    #define mem(a, b) memset(a, b, sizeof(a))
    #define _  ios_base::sync_with_stdio(0),cin.tie(0)
    //freopen("1.txt", "r", stdin);
    using namespace std;
    const int maxn = 110000, INF = 0x7fffffff;
    int ans;
    LL tot[maxn + 10];
    int prime[maxn+10], phi[maxn+10];
    bool vis[maxn+10];
    void getphi()
    {
        ans = 0;
        phi[1] = 1;
        for(int i=2; i<=maxn; i++)
        {
            if(!vis[i])
            {
                prime[++ans] = i;
                phi[i] = i - 1;
            }
            for(int j=1; j<=ans; j++)
            {
                if(i * prime[j] > maxn) break;
                vis[i * prime[j]] = 1;
                if(i % prime[j] == 0)
                {
    
                    phi[i * prime[j]] = phi[i] * prime[j]; break;
                }
                else
                    phi[i * prime[j]] = phi[i] * (prime[j] - 1);
            }
        }
    }
    
    int get_cnt(int n, int m)
    {
        int ans = 0;
        for(int i = 2; i * i <= n; i++)
        {
            if(n % i) continue;
            while(n % i == 0) n /= i;
            prime[ans++] = i;
        }
        if(n != 1) prime[ans++] = n;
        int res = 0;
        for(int i = 1; i < (1 << ans); i++)
        {
            int tmp = 1, cnt2 = 0;
            for(int j = 0; j < ans; j++)
            {
                if(((i >> j) & 1) == 0) continue;
                tmp *= prime[j];
                cnt2++;
            }
            if(cnt2 & 1) res += m / tmp;
            else res -= m / tmp;
        }
        return m - res;
    }
    
    int main()
    {
        getphi();
        int a, b, c, d, k;
        for(int i = 1; i < maxn; i++)
        {
            tot[i] = tot[i - 1] + phi[i];
    
        }
        int T, kase = 0;
        cin >> T;
        while(T--)
        {
            scanf("%d%d%d%d%d", &a, &b, &c, &d, &k);
            if(k == 0)
            {
                printf("Case %d: 0
    ", ++kase);
                continue;
            }
            int n = b / k, m = d / k;
            LL sum = tot[n > m ? m : n];
           // cout << sum << endl;
            if(m > n) swap(n, m);
            for(int i =m + 1; i <= n; i++)
            {
                sum += get_cnt(i, m);
            }
            printf("Case %d: %lld
    ", ++kase, sum);
        }
    
        return 0;
    }

    GCD

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 17385    Accepted Submission(s): 6699


    Problem Description
    Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
    Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

    Yoiu can assume that a = c = 1 in all test cases.
     
    Input
    The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
    Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
     
    Output
    For each test case, print the number of choices. Use the format in the example.
     
    Sample Input
    2 1 3 1 5 1 1 11014 1 14409 9
     
    Sample Output
    Case 1: 9 Case 2: 736427
    Hint
    For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
     
    Source
    自己选择的路,跪着也要走完。朋友们,虽然这个世界日益浮躁起来,只要能够为了当时纯粹的梦想和感动坚持努力下去,不管其它人怎么样,我们也能够保持自己的本色走下去。
  • 相关阅读:
    拓端tecdat|R语言JAGS贝叶斯回归模型分析博士生延期毕业完成论文时间
    拓端tecdat|数据感知游客的森林公园游憩需求
    空间100%
    uniq -c 去掉重复行
    工作中实用的Shell脚本实例
    Linux下如何解压和压缩rar格式的包
    LRM-00109: could not open parameter file
    Xmanager5 Passive oracle图形化界面出来之后鼠标点不了
    谷歌浏览器请求返回JSON内容自动格式化
    JENKINS中创建全局变量并在JOB中使用
  • 原文地址:https://www.cnblogs.com/WTSRUVF/p/10324294.html
Copyright © 2011-2022 走看看