A Simple Problem with Integers
Time Limit: 5000MS | Memory Limit: 131072K | |
Total Submissions: 116441 | Accepted: 36178 | |
Case Time Limit: 2000MS |
Description
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.
Input
The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.
Output
You need to answer all Q commands in order. One answer in a line.
Sample Input
10 5 1 2 3 4 5 6 7 8 9 10 Q 4 4 Q 1 10 Q 2 4 C 3 6 3 Q 2 4
Sample Output
4 55 9 15
Hint
The sums may exceed the range of 32-bit integers.
Source
POJ Monthly--2007.11.25, Yang Yi
题目大意:给N个数,对应编号1~N。对应两种操作:①求编号a-b对应数字的和。②编号a-b对应数字都加c。
解题思路:线段树模板,用lazy思想,关键是要弄懂pushdown函数。理解了的话这类题目都可以看成是模板题。。
个人对pushdown函数的理解:先用lazy[num]存放的是这个区间上所有的数应该变换的值,即编号为num的结点上的数实际值应该是当前值加上lazy[num]。于是对应左右结点对应的区间的和应该加上lazy[num]*对应长度。然后将lazy传给左右结点。当要使用到时再调用pushdown。(这个看个人理解。。这种想法可能只适合我自己。。。做题的时候弄懂的)
个人对pushdown函数的理解:先用lazy[num]存放的是这个区间上所有的数应该变换的值,即编号为num的结点上的数实际值应该是当前值加上lazy[num]。于是对应左右结点对应的区间的和应该加上lazy[num]*对应长度。然后将lazy传给左右结点。当要使用到时再调用pushdown。(这个看个人理解。。这种想法可能只适合我自己。。。做题的时候弄懂的)
#include <cstdio> #include <algorithm> using namespace std; const int N=100005; const int maxn = N*3; long long a[maxn],val[maxn],lazy[maxn]; int n,m,ql,qr,A,B,value; void pushdown(int num,int l) { if(lazy[num]) { lazy[num*2] += lazy[num]; lazy[num*2+1] += lazy[num]; val[num*2] += (long long)lazy[num]*(l-(l/2)); val[num*2+1] += (long long)lazy[num]*(l/2); lazy[num] = 0; } } void build(int num,int l,int r) { if(l==r) { val[num] = a[l]; return ; } int mid = (l+r)/2; build(num*2,l,mid); build(num*2+1,mid+1,r); val[num] = val[num*2]+val[num*2+1]; } long long Findsum(int num,int l,int r) { int mid = (l+r)/2; long long ans = 0; if(ql<=l&&qr>=r) { return val[num]; } else { pushdown(num,r-l+1); if(mid>=ql) { ans += Findsum(num*2,l,mid); } if(mid<qr) { ans += Findsum(num*2+1,mid+1,r); } } return ans; } void update(int num,int l,int r) { if(A<=l&&B>=r) { lazy[num] += (long long)value; val[num] += (long long)value*(r-l+1); return ; } pushdown(num,r-l+1); int mid = (l+r)/2; if(A<=mid) update(num*2,l,mid); if(B>mid) update(num*2+1,mid+1,r); val[num] = val[num*2]+val[num*2+1]; } int main() { scanf("%d %d",&n,&m); for(int i=1;i<=n;i++) { scanf("%lld",&a[i]); } build(1,1,n); char c; for(int i=1;i<=m;i++) { getchar(); scanf("%c",&c); if(c=='Q') { scanf("%d %d",&ql,&qr); printf("%lld ",Findsum(1,1,n)); } else { scanf("%d %d %d",&A,&B,&value); update(1,1,n); } } }