zoukankan      html  css  js  c++  java
  • HDU-2604 Queuing(矩阵快速幂)

    Queuing

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 6076    Accepted Submission(s): 2643


    Problem Description
    Queues and Priority Queues are data structures which are known to most computer scientists. The Queue occurs often in our daily life. There are many people lined up at the lunch time. 

      Now we define that ‘f’ is short for female and ‘m’ is short for male. If the queue’s length is L, then there are 2L numbers of queues. For example, if L = 2, then they are ff, mm, fm, mf . If there exists a subqueue as fmf or fff, we call it O-queue else it is a E-queue.
    Your task is to calculate the number of E-queues mod M with length L by writing a program.
     
    Input
    Input a length L (0 <= L <= 10 6) and M.
     
    Output
    Output K mod M(1 <= M <= 30) where K is the number of E-queues with length L.
     
    Sample Input
    3 8 4 7 4 8
     
    Sample Output
    6 2 1
     
    Author
    WhereIsHeroFrom
     
    Source
     
    Recommend
    lcy

     题目大意:给定长度L,由m、f组成的队列,如果是fmf、fff则是E队列,问长为L的队列中最多有多少E队列(mod K)

    解题思路:前几个例子不难发现F5 = F1+F3+F4。所以可以得出如下关系:

    1  0  1  1        F1            F5

    1  0  0  0        F2            F1

                     *              =     

    0  1  0  0        F3            F2

    0  0  1  0        F4       F3

    所以就是计算初始矩阵a的l次幂最后mod k即可

    代码:

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    int n,mod;
    struct matrix
    {
        long long m[4][4];
        matrix operator*(const matrix& a)const
        {
            matrix temp;
            for(int i=0;i<4;i++)
            {
                for(int j=0;j<4;j++)
                {
                    temp.m[i][j] = 0;
                    for(int k=0;k<4;k++)
                    {
                        temp.m[i][j] += m[i][k]*a.m[k][j]%mod;
                        temp.m[i][j] %= mod;
                    }
                }
            }
            return temp;
        }
    };
    
    int ks(matrix &a)
    {
        if(n<=3)
            return (2*n)%mod;
        if(n==4)
            return 9%mod;
        n -= 4;
        matrix ans;
        memset(ans.m,0,sizeof(ans));
        for(int i=0;i<4;i++)
        {
            ans.m[i][i] = 1;
        }
        while(n)
        {
            if(n%2)
                ans = ans*a;
            a = a*a;
            n /= 2;
        }
    
        int sum=0;
        sum+=ans.m[0][0]*9%mod;
        sum+=ans.m[0][1]*6%mod;
        sum+=ans.m[0][2]*4%mod;
        sum+=ans.m[0][3]*2%mod;
        sum %= mod;
        return sum;
    }
    int main()
    {
        matrix a;
        while(scanf("%d %d",&n,&mod)!=EOF)
        {
            memset(a.m,0,sizeof(a.m));
            a.m[0][0] = a.m[0][2] = a.m[0][3] = 1;
            a.m[1][0] = a.m[2][1] = a.m[3][2] = 1;
            printf("%d
    ",ks(a));
        }
    }
  • 相关阅读:
    云之家技术文档下载
    原始MAC地址
    如何创建数据中心
    获取金蝶云试用许可
    【分享】工作流支持邮件提醒相关配置
    调试K3网页版需要注意的问题
    excel2010冻结行列
    Delphi 泛型 接口约束的实例 转
    delphi 各新版本特性收集
    Delphi XE Refactor重构功能简单说明 转
  • 原文地址:https://www.cnblogs.com/WWkkk/p/7399306.html
Copyright © 2011-2022 走看看