zoukankan      html  css  js  c++  java
  • POJ-1986 Distance Queries(LCA、离线)

    Distance Queries
    Time Limit: 2000MS   Memory Limit: 30000K
    Total Submissions: 14378   Accepted: 5062
    Case Time Limit: 1000MS

    Description

    Farmer John's cows refused to run in his marathon since he chose a path much too long for their leisurely lifestyle. He therefore wants to find a path of a more reasonable length. The input to this problem consists of the same input as in "Navigation Nightmare",followed by a line containing a single integer K, followed by K "distance queries". Each distance query is a line of input containing two integers, giving the numbers of two farms between which FJ is interested in computing distance (measured in the length of the roads along the path between the two farms). Please answer FJ's distance queries as quickly as possible! 

    Input

    * Lines 1..1+M: Same format as "Navigation Nightmare" 

    * Line 2+M: A single integer, K. 1 <= K <= 10,000 

    * Lines 3+M..2+M+K: Each line corresponds to a distance query and contains the indices of two farms. 

    Output

    * Lines 1..K: For each distance query, output on a single line an integer giving the appropriate distance. 

    Sample Input

    7 6
    1 6 13 E
    6 3 9 E
    3 5 7 S
    4 1 3 N
    2 4 20 W
    4 7 2 S
    3
    1 6
    1 4
    2 6
    

    Sample Output

    13
    3
    36
    

    Hint

    Farms 2 and 6 are 20+3+13=36 apart. 

    Source

    题目大意:第一行告诉你田的数量和田之间的路数量,然后告诉你两块田的距离和方向(可以忽略方向),然后k次询问,两块田间的最短距离。

    解题思路:直接套模板,对于lca离线算法的理解学习,参考(http://www.cnblogs.com/JVxie/p/4854719.html),觉得很详细,就通过这个了解了离线,在线的方法至今不懂。。

    #include<cstdio>
    #include<vector>
    #include<algorithm>
    using namespace std;
    const int maxn=1e5+10;
    
    struct node
    {
        int v,c;
    };
    
    vector<node>tree[maxn],que[maxn];
    int dis[maxn],num[maxn],f[maxn];
    bool vis[maxn];
    
    void Init(int n)
    {
        for(int i=0;i<=n;i++)
        {
            tree[i].clear();
            que[i].clear();
            f[i] = i;
            dis[i] = 0;
            num[i] = 0;
            vis[i] = 0;
        }
    }
    
    int Find(int x)
    {
        int r=x;
        while(r!=f[r])
        {
            r = f[r];
        }
        while(x!=f[x])
        {
            int j=f[x];
            f[x] = r;
            x = j;
        }
        return x;
    }
    
    void lca(int u)
    {
        vis[u] = true;
        f[u] = u;
        for(int i=0;i<que[u].size();i++)
        {
            int v = que[u][i].v;
            if(vis[v])
            {
                num[que[u][i].c]=dis[v]+dis[u]-2*dis[Find(v)];
            }
        }
        for(int i=0;i<tree[u].size();i++)
        {
            int v=tree[u][i].v;
            if(!vis[v])
            {
                dis[v] = dis[u]+tree[u][i].c;
                lca(v);
                f[v] = u;
            }
        }
    }
    
    int main()
    {
        int x,y,c,n,m,q;
        char s[5];
        while(scanf("%d %d",&n,&m)!=EOF)
        {
            Init(n);
            for(int i=0;i<m;i++)
            {
                scanf("%d %d %d %s",&x,&y,&c,s);
                node temp;
                temp.v = y;
                temp.c = c;
                tree[x].push_back(temp);
                temp.v = x;
                tree[y].push_back(temp);
            }
            scanf("%d",&q);
            for(int i=0;i<q;i++)
            {
                scanf("%d %d",&x,&y);
                node temp;
                temp.v = y;
                temp.c = i;
                que[x].push_back(temp);
                temp.v = x;
                que[y].push_back(temp);
            }
            lca(1);
            for(int i=0;i<q;i++)
                printf("%d
    ",num[i]);
        }
    
    }
  • 相关阅读:
    bzoj1951 [Sdoi2010]古代猪文
    bzoj2693 jzptab
    数学一本通第三章总结
    poj1019 Number Sequence
    SGU179 Brackets light
    字母组合2
    字母组合
    Java基础知识强化之集合框架笔记09:Collection集合迭代器使用的问题探讨
    Java基础知识强化之集合框架笔记08:Collection集合自定义对象并遍历案例(使用迭代器)
    Java基础知识强化之集合框架笔记07:Collection集合的遍历之迭代器遍历
  • 原文地址:https://www.cnblogs.com/WWkkk/p/7409868.html
Copyright © 2011-2022 走看看